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Abstract 

 

  Considerably short electrodynamic tethers can be used as a low-thrust propulsion 

system with minimum or no mass expenditure. The propulsive force is generated by 

inducing a current flow through the tether which interacts with the magnetosphere of the 

planet (i.e. Earth, Jupiter and other planetary bodies with magnetosphere). The basics of 

electrodynamic tether systems have been studied and successful experiments such as 

boost and de-boost of spacecraft have been conducted in the past. This study presents a 

simple guidance scheme for the current in the tether in order to perform orbital 

maneuvers. 

The general perturbation equations are used to develop the guidance scheme 

algorithm. The tether is assumed to be perfectly aligned with the local vertical and the 

tether flexibility is neglected. The guidance is capable of both in-plane and out-of-plane 

maneuvers, simultaneously changing the orbit parameters. Several numerical examples 

are simulated that demonstrate the ability of the guidance to accurately maneuver the 

vehicle. The simplicity of the guidance law allows it to be suitable for mission planning 

and on-board implementation. 

 xi



 
 
 

ORBITAL MANEUVERING WITH ELECTRODYNAMIC TETHERS 
 
 
 
 

I. Introduction 
 
 
 

1.1 Overview 
 
 

There are many potential uses of tethers and tethered systems. The 

electrodynamic tether, in which we are interested, is a conductive wire where a generated 

or provided current runs through. There are numerous possible applications of such a 

system. Main applications include power generation, propulsion and self powered ultra-

low-frequency broadcast antenna [1].  

 Reasonably short electrodynamic tethers can be used as a low-thrust propulsion 

system with minimum or no mass expenditure. The propulsive force is generated by 

inducing a current flow through the conductive tether, which interacts with the 

magnetosphere of the planet (i.e. Earth, Jupiter and other planetary bodies with 

magnetosphere). The tether thrust depends on the current level, magnetic field strength 

and the orbital velocity. In addition, the available current level depends on the 

specifications of the spacecraft and the surrounding ion density which limits the 

conductivity of the current path [2]. 

 Hollow cathode plasma contactors, field emitter array cathodes and bare tether 

systems are the existing interface concepts to facilitate electron transfer between the 
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tether and the surrounding ambient plasma. Hollow cathode plasma contactors have been 

widely used in electrodynamic tether experiments and spacecraft discharging 

applications. While they use some expendable gas for electron collection and emission, 

the mass of this gas is minimal compared to the propellant usage of traditional propulsion 

systems. On the other hand, field emitter array cathodes and bare conductive tethers do 

not require any expendable gas and are able to provide the necessary current level. 

Finally a bare conductive tether can be used for electron collection [2]. 

 The electrodynamic tether propulsion system provides low-thrust continuous 

propulsion. Low-thrust propulsion can significantly reduce the amount of propellant used 

in chemical propulsion systems. However, low-thrust orbit maneuvering requires thrust 

steering and continuous guidance. 

 
 
1.2 Problem Statement 
 
 
 A large percentage of the payload for many spacecraft launches is the propellant 

for either onboard usage or for upper stages. This increases the cost while reducing the 

actual payload capacity. Furthermore, a spacecraft’s lifetime is limited by the amount of 

fuel carried by the spacecraft.  

 Maneuvering with electrodynamic tethers has potential uses for new ways of 

operating in the space. The nearly propellantless nature of the system could enable many 

possible applications and long-term missions in Low Earth Orbit (LEO). The basics of 

such systems have been studied widely and successful experiments on electrodynamic 
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tether systems have been conducted in the past. Some possible applications could be 

achieved in the near future. 

 A good example of electrodynamic tether propulsion is the boost and de-boost of 

spacecraft. This concept has been well-developed by several researchers [3, 4, 5] and will 

be demonstrated in the NASA ProSEDS mission. Other possible applications of 

electrodynamic propulsion systems could be a satellite servicing vehicle or a satellite tug. 

A satellite-servicing vehicle could rendezvous with multiple satellites in different orbits 

for refueling or replacing components and thus extend the lifetime of expensive space 

assets. An orbital tug vehicle could change the orbits of LEO satellites [2].  

 The main disadvantages of electrodynamic tethers are the operational altitude 

restriction and long period of time required to achieve orbital maneuvers. The 

electrodynamic tether uses the plasma in the ionosphere for the return path of the current. 

Unfortunately, the plasma density above LEO is not sufficient for conductivity. Secondly, 

the thrust that can be achieved with practical system design is low and maneuvers can 

take even months to perform. Therefore, an electrodynamic tether system should be 

designed as autonomous as possible limiting human support for these long duration 

operations and making the system more cost-effective. 

As mentioned above, a continuous guidance scheme is required for the system to 

perform orbital maneuvers. The guidance law should be capable of accomplishing both 

in-plane and out-of-plane maneuvers. A simple guidance scheme that requires minimal 

calculations would enable onboard implementation. Such guidance scheme could also be 

used by mission planners to execute trade studies and system performance evaluation. 
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1.3 Objective 
 
 
 The objective of this study is to develop a simple guidance scheme for orbital 

maneuvering with electrodynamic tethers and to demonstrate its applicability. The 

guidance scheme should be capable of simultaneously changing the orbit’s size, shape 

and plane to achieve the desired orbital maneuver. Furthermore, it should impose a 

minimal computational load. 
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II. Background and Literature Review 

 
 
 
2.1 Introduction 
 
 

The electrodynamic tether is a long conductive wire extended from a spacecraft 

that carries a current. The tether tends to stay aligned with the local vertical in an absence 

of any external force by the gravity gradient torque. The major applications suggested for 

an electrodynamic tether system are power generation, propulsion, and self-powered 

ultra-low-frequency broadcast antennas [1]. 

2.1.1 Power Generation.  Electrodynamic tethers can be used in low earth orbits 

for power generation. Moving a conductor in a magnetic field generates an electromotive 

force (EMF), which drives electrons through the conductor. To achieve this current flow, 

the circuit must be closed either by emitting the electrons back to the surroundings or by 

collecting positive ions. For electrodynamic tether applications, the current flow takes 

place by collecting electrons from ionosphere at one end of the tether and emitting back 

into ionosphere at the other end of the tether. Using a conductive tether in low earth orbit 

at inclinations from low- to mid-latitude, 50 to 250 volts of EMF can be generated per a 

kilometer length of tether [2]. However, the cost of converting orbital energy to EMF is 

de-orbiting the satellite. 

 In 1994, Plasma Motor-Generator (PMG) rocket-borne tether experiment was 

flown. The PMG used hollow cathode devices as the plasma interface at each end of the 

system. The tether was only 500 meters and tether currents of 0.3 Amperes were achieved 
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[7]. A more significant current flow (~1A) through an electrodynamic tether was 

achieved near 300-km altitude during NASA’s TSS-1R mission in 1996 [8]. 

2.1.2 Propulsion.  Inducing a current flow through a conductive tether, the 

electrical energy can be converted into tether force. Fairly short electrodynamic tethers 

can be used as means of a propulsion system. The current in the tether interacts with the 

earth’s magnetic field to produce Lorentz force on the tether. The force generated on the 

tether is a function of the current level, magnetic field strength and the orbital velocity. 

Electrodynamic propulsion is the subject of this study.  

 

2.2 Electrodynamic Tether Propulsion 
 
 
 As mentioned above, the propulsive force generated by the electrodynamic tether 

depends on the current level and magnetic field strength. While the earth’s magnetic field 

decreases by the inverse cube of the distance from the earth’s center, the current level 

available to the tether is determined by a number of factors including the ambient ion 

density and the system’s electron collection and emission capability. The electron transfer 

between the system and the ionosphere is conducted through plasma contactors. While 

hollow cathode emitters are commonly used in related space applications, field emitter 

array cathodes and bare tether systems has become attractive interface concepts, recently. 

2.2.1 Earth’s Magnetic Field.  Around the mid-nineteenth century, Ampere and 

other scientist pointed out that electric currents are the source for all magnetic fields, 

including the geomagnetic field. Today, it is known that part of Earth’s core is liquid with 

metallic properties, and it is believed that the motion of the fluid metal generates currents, 
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which induce the Earth’s magnetic field. A simple approach to modeling Earth’s 

magnetic field is the magnetic field of a sphere uniformly magnetized around a dipole 

axis. The points where this dipole axis intersects Earth’s surface are called geomagnetic 

poles and the plane through the center of the Earth, perpendicular to the dipole axis is 

called geomagnetic equator. The angle between the geomagnetic equator and the 

geographical equator is 11.3 degrees [9].  

This dipole model indicates that the magnetic intensity over the poles is twice the 

intensity over the equator, also the magnetic field strength drops proportional to the cube 

of the distance from the dipole center. Although the Earth’s magnetic field is not a perfect 

dipole, its characteristics are similar to the simple dipole approximation. There are strong 

anomalies in the actual field mainly caused by the irregularities and eddies in the current 

system of Earth’s core that drives the magnetic field. Less severe anomalies are caused 

by the ferromagnetic materials in the crust, solar and lunar gravitational effects and the 

magnetic disturbance from the Sun. Finally, with a little bit of sense of humor, we should 

expedite using electromagnetic tether systems because historical records indicate that the 

strength of Earth’s magnetic field is decreasing at a rate that will eliminate the field in 

3000 years [9]. 

2.2.2 Plasma Electron Density.  An important parameter determining the thrust 

level that can be generated by the electrodynamic tether is the electron density in the 

surrounding plasma. There are several temporal and spatial variations in the electron 

density. The ionosphere has a vertical electron density profile with a distinct difference 

between day and night (Figure2.1). Moreover, the electron density varies between 
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latitudes and there are density differences in different parts of the ionosphere due to the 

structure of the magnetosphere.  

 

 
 
 Figure 2.1 Typical Midlatitude Daytime and Nighttime Electron Density Profiles 

for Sunspot Maximum (Solid Lines) and Minimum (Dashed Lines) [9] 
 
 

The ionosphere has features dramatically varying with the geomagnetic latitude. 

Mainly, low latitude ionosphere is subject to instabilities due to variations in 

magnetosphere and high latitude ionosphere is strongly affected by auroral magnetic 

field. The mid-latitude ionosphere is easy to model and more stable. Besides the 

variations due to geomagnetic latitude, other variations occur between day and night, 

seasons of the year and due to solar activity [9]. 

 The electron density goes under regular variations between day and night. Since 

the ionization occurs due to the solar radiation, the electron density falls down during the 

night. In addition to the change in the ionization rate between day and night, during the 

day the atmosphere expands by the solar heating and the ionosphere rises. There is a strict 
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relationship between the solar activity and electron density. During low solar activity, the 

electrons densities are half to a quarter of that during high solar activity [9]. There are 

also variations resulting from the atmospheric tides created by solar and lunar gravity. 

The electron density profile experienced by the International Space Station during a 

particular day is shown in Figure 2.2. 

 

 

Figure 2.2 The Electron Density Profile Encountered by the ISS [2] 
 

2.2.3 Plasma Interfaces.  Normally, a circuit loop of conducting wire carrying a 

current will yield a net force of zero in a uniform magnetic field since the force on one 

side of the wire would be canceled by the opposite force on the other side. On the other 

hand, the current flow in the electrodynamic tether system is one-way and the circuit is 

closed trough the plasma and the force on the plasma does not affect the system. For this 

purpose, plasma contactors are used for the electron change between the plasma and the 

system. Up to date, hollow cathode emitters are used for electron emission and 
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conductive spheres are used for electron collection. However, more effective ways of 

electron transfer has been suggested. Field Emitter Array Cathodes for electron emission 

and Bare Tether electron collection are some of the new effective technologies suggested. 

2.2.3.1 Hollow Cathode Emitters.  The hollow cathode emitter uses some 

expendable gas for electron emission. The gas is heated and the electrons in the tether 

interact with heated gas to form an ion plasma. An electrode positively charged with 

respect to the system, draws the electrons and expels them to the space [10]. Since hollow 

cathodes establish a known vehicle ground reference potential with respect to the local 

plasma, they are considered to be safer for spacecraft systems. They also allow simple 

reversibility of the tether current for switching between power and thrust generation [1]. 

On the other hand, the major drawback to the hallow cathodes is the gas expenditure. 

2.2.3.1 Field Emitter Array Cathodes (FEACs).  A substitute for hollow 

cathode emitters are the Field-Emitter Array Cathodes (FEACs) that will enable 

propellantless propulsion with electrodynamic tethers. This new technology has potential 

applications in spacecraft electron emission and charge control. Instead of a gas 

consuming plasma contactor or a high-powered hot emitter, FEACs consist of many 

micron level cathode-gate pairs to perform cold field emission at relatively low voltages. 

While each individual cathode emits only micro-amp level currents, an array of these 

cathodes printed on a semiconductor wafer is capable of emitting amp/cm2 current 

densities. FEACs offer relative low power, simple to integrate and cheap technique of 

electron emission for electrodynamic tethers [11]. 

2.2.3.1 Bare Tether Electron Collection.  An alternative way of collecting 

electrons from the ambient plasma is using the tether itself which is suitable for 
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electrodynamic altitude boosting applications. The lower portion of the conductive tether 

is left uninsulated and functions as a very efficient anode. The tether is biased positively 

with respect to the plasma and collects the electrons from the plasma. The small cross-

sectional area of the tether makes it a much more efficient collector in terms of the 

electron collection per unit area than a large conductive sphere. Eliminating the need for 

large massive and high-drag sphere or a resource-using plasma contactor at the upper and 

of the tether, the bare electron collection system reduces cost, complexity and gravity 

center shift in the system. Another benefit of the bare tether is its self-adjusting nature to 

the electron density changes. This is achieved by the natural expansion of the biased 

tether portion when the density drops [1]. 

 Choiniere et al [12], suggests that injection of radio frequency (RF) power along 

tether can enhance electron collection by creating a time periodic field distribution by the 

RF excitation which results in the scattering off the electrons from their usual orbital 

motion limited trajectories. Their studies showed that large current enhancements could 

occur at some resonance frequencies but this enhancements costs high RF power. This 

could improve the limitation of electron density on electrodynamic power and thrust 

generation. 

2.2.4 Applications of EDT Propulsion.  An application of electrodynamic tether 

propulsion that is feasible in the near term, boost and de-boost of spacecraft, has been 

studied by several researchers [3, 4, 5] and will be demonstrated in the NASA ProSEDS 

mission. A satellite servicing vehicle and satellite tug are other possible applications of 

EDT propulsion systems. To extend the lifetime of expensive space assets, a satellite 

servicing vehicle could rendezvous with multiple satellites in different orbits for refueling 
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or replacing components. An orbital tug vehicle could change the orbits of LEO satellites 

[13].  

 

2.3 Research Efforts 

 
 
 There have been a large number of studies on electrodynamic tethers. Most of 

these studies are focused on specific missions. The most likely implementation of 

electrodynamics in the near future is probably the de-orbiting spacecraft or upper stages 

of launch vehicles. The application that seems to have the second highest probability is 

orbit maintenance and altitude boosting. Therefore, most studies are focused on the 

experimental and future missions, their performance analysis and system configurations. 

A focus of many researchers’ interest is the orbital maintenance of the International 

Space Station (ISS). The use of electrodynamic tethers to boost up the ISS could trim $2 

billion [14] a year off the operating cost. 

 The study presented by Caroll [15] is significant in terms of this thesis study’s 

scope and approach. His study includes the basic current laws for orbital maneuvering 

with electrodynamic tethers by controlling the tether current. Another study, presented by 

West et al [16], examines orbital maneuvering strategies for small satellites in low earth 

orbit. Electrodynamic tether propulsion and orbital maneuvering is also suggested by 

Tethers Unlimited Inc. in their “The µPET Propulsion SystemTM” project, but there is not 

any technical paper published about this project yet. 

Brief information about some of the related studies and the studies mentioned 

above will be presented in the following pages. 
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2.3.1 EDT Propulsion Missions.  The Tethered Satellite System Reflight (TSS-

1R). The TSS-1R mission, on STS-75 in 1996 [1], is the second flight of the TSS 

hardware, which first flew on STS-46 in 1992. The goals of this mission were to explore 

space plasma-electrodynamic processes and the orbital mechanics of a gravity gradient 

stabilized system of two satellites linked by a conductive tether. The STS-75 mission 

flew in a circular orbit at 300 km altitude in a 28.5° inclination. The deployed tether 

length reached nearly 20 km before the tether broke because of an insulation flaw [17]. 

 The results of the TSS-1R mission showed that current extraction from the 

ionosphere was extremely efficient and the current collected by the satellite at different 

voltages exceeded the levels predicted by the numerical models up to three times. The 

data collected throughout the experiment is encouraging for applications of 

electrodynamic tethers such as electrical power and thrust generation and the use of 

tethers as VLF/ULF antennas [17]. 

 Propulsive Small Expendable Deployer System (ProSEDS) The ProSEDS mission 

is a flight demonstration of an electrodynamic tether propulsion system with the concepts 

and technology derived from the TSS missions results [14]. The system will fly aboard a 

Delta II rocket and the satellite will be the second stage of the rocket placed into a 400 

km circular orbit. During this mission scheduled for June 2002, ProSEDS will deploy a 5 

km bare conducting tether with a 10 km non-conducting tether at the far end to put 

enough distance on the tether so it stays taut. The ProSEDS experiment will demonstrate 

the ability of an electrodynamic tethered satellite to generate significant thrust without the 

use of any propellant by de-orbiting the Delta II second stage [14, 18]. 
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 The Terminator TetherTM Tethers Unlimited Inc., is currently developing the 

Terminator Tether system in a Small Business Innovation Research agreement with the 

Marshall Space Flight Center for de-orbiting satellites from low earth orbit.  

 The suggested system is a lightweight, low-cost device that will use 

electrodynamic drag generated by a conducting bare tether. Using their simulations, they 

found out that the system with a tether length of 5-10 km could utilize some of the 

generated power on the tether to drive its own circuitry without severely affecting the de-

orbit rate therefore could be autonomous, independent of the host spacecraft. They also 

suggest that a tether device massing 2% of the host spacecraft can de-orbit an upper stage 

from 400 km in under two weeks and a mid-LEO satellite from 850 km in under three 

months. They developed a feedback-control scheme for dynamically stabilizing the tether 

[4].  

 Reboosting of International Space Station There are a number of studies on 

reboosting the International Space Station (ISS) to make up for the orbital energy loss 

due to aerodynamic drag. Furnishing the ISS with an electrodynamic tether propulsion 

system could dramatically reduce its dependency on rocket fuel and refueling missions, 

drastically lowering the operating costs and relaxing the risk of resupply mission failure. 

 For this purpose, NASA has designed a tether capable of generating 0.5-0.8 N of 

thrust using less than 10 kW of ISS’s power. The proposed tether would consist of 10 km 

long aluminum ribbon with the dimensions of 0.6 mm by 10 mm in cross section [10]. 

 The Microsatellite Propellantless Electrodynamic Tether Propulsion SystemTM 

Another system currently being developed by Tethers Unlimited Inc. is called 

Microsatellite Propellantless Electrodynamic Tether Propulsion System that will provide 
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propulsion to microsatellites with the use of electrodynamic tethers. The company claims 

that the system would provide long-duration boost, deboost, inclination change and 

stationkeeping propulsion [19]. 

2.3.2 Previous Studies.  As mentioned above, most of the studies on 

electrodynamic tethered systems are focused on specific missions which are limited to 

power generation and orbital boosting. Other studies embrace the issues related to the 

stability of the tether, plasma-tether interactions and feasibility of electrodynamic tether 

systems. However, relatively little research effort has been put into orbital maneuvering 

with electrodynamic tethers. 

 In the study, Damping in Rigid Electrodynamic Tethers on Inclined Orbits, Palaez 

et al. [20] examined the dynamic instability of the tether originated from the 

electrodynamic forces that should be accounted for in a long-term operation of an 

electrodynamic tether on a circular inclined orbit. They analyzed two simple devices, an 

additional mass sliding up and down on the tether (dashspot) and modulation of the tether 

length, that could be used to damp the instability which is characterized by a coupling 

between the in-plane and out-of-plane oscillations of the tether. Their results showed that 

there is a stability domain for the tether with the dashspot device and the tether length 

modulation technique is too complex to implement. 

 In a study presented by Yoshiki [21], the performance of an electrodynamic tether 

orbit transfer system for round trip missions between low earth orbits is analyzed. He 

evaluated both electrodynamic tether orbit transfer system and ion thruster orbit transfer 

system for demonstrative parameters, such as the mass, the electric power and the 

mission time. According to his results, there is a lower limit to the mission time for a 
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given altitude of arrival orbit and there is a higher limit to the altitude of arrival orbit for a 

given mission time. Major mechanical parameter affecting the performance of the system 

is the tether length. He also showed that the tether orbit transfer system has advantages in 

terms of mass, relative to the ion propulsion orbit transfer system.  

Martinez-Sanchez et al. [22] presented a systems study of a 100 kW 

electrodynamic tether. Reviewing the scientific and engineering challenges of the design 

of electrodynamic power and propulsive tether systems up to 100 kW, they examined the 

performance and cost of the most important applications of such systems. The study 

includes electrodynamic tether system design issues and cost comparisons. The main 

propulsive applications considered in their study are drag compensation, orbital altitude 

changing and inclination change. They suggested the use of the current law that was also 

determined by Carroll [15] for the inclination change. The power applications 

investigated in their study are converting orbital energy or chemical propellant energy to 

electrical power and orbital energy storage for solar arrays. They suggest that power 

generation with rocket force make-up offers large fuel savings compared to fuel cells. 

Gilchrist et. al. [8] reviewed a number of aspects of space electrodynamic tether 

propulsion technology. This study includes system-level issues associated with effective 

electrodynamic tether operation including ionospheric and motional variability of the 

power generation, and investigation of the tether end contacts under varying ionospheric 

conditions. Brief information of electron collecting and emitting devices are also 

presented in this work. They summarized the characteristics and advantages of two 

relatively new technologies for space tether systems, which are bare tethers for electron 

collection and Field Emitter Array Cathodes. They also inspected potential low earth 
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orbit applications considered for electrodynamic tethers and the ProSEDS mission. 

Mentioning the encouraging propellantless nature of the electrodynamic tethers, the 

applications presented in their study are de-orbiting, orbit maintenance and reusable 

upper stage propulsion. 

The use of electrodynamic tether propulsion for orbit maintaining, boosting and 

orbit maneuvering small satellites in low earth orbit was also studied by West et al. [16] 

in a recent study. They investigated the tether atmospheric drag and available current 

limited by the electron collection. They also discuss that altitude boosting with a constant 

electrodynamic tether thrust introduces changes in inclination and eccentricity, but a way 

of compensating these effects is unanswered. This problem will be addressed later in this 

thesis. 

The Guidebook For Analysis of Tether Applications by Carroll [15] is a 

comprehensive study on tethers. In addition to a significant research on tether dynamics 

and tether materials, the basic principles of electrodynamic tethers and electrodynamic 

libration control issues are presented. Carroll determined the current law for each orbital 

element that describes the tether current behavior required to change the particular orbital 

element. Carroll also pointed out the electrodynamic tether stability issues related to the 

electrodynamic forces and suggested tether design and current modulation for the control 

of the librations. 

 

2.3.3 Low Thrust Propulsion.  Electrodynamic tether propulsion has similarities 

with conventional low propulsion systems, such as ion propulsion. Both have the 

relatively small thrust levels, long mission times, and continuous operation of the system. 
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However, the guidance schemes and optimization algorithms developed for low-

propulsion systems by researchers are based on controlling the thrust vector direction. In 

electrodynamic propulsion, the thrust vector is determined by the electromagnetic field 

lines and the tether direction. Controlling the tether stabilized in a desired direction is an 

issue not solved yet. The best option for stabilizing the tether is around the local vertical 

with the help of gravity gradient torque.  

 The guidance schemes and optimization algorithms studied by other researchers 

are not directly applicable to electrodynamic tether propulsion concept and further 

research effort may be spent for adapting these approaches to electrodynamic tether 

propulsion. This study is focused on providing a simple guidance scheme with minimal 

computational load. Therefore, further optimization of the guidance scheme is out of this 

study’s scope and will not be discussed. Some of the works of researches on low thrust 

propulsion orbit maneuvering are next presented. 

 Gaylor [23] analyzed low thrust orbit transfers starting with the perturbation 

equations and developed a simple closed loop guidance law. The maneuvers considered 

by Gaylor are orbit circularization and inclination change. One of the two control laws 

used to circularize the orbit is a discontinuous thrust scheme and the thruster is fired on 

perigee and apogee centered arcs of the orbit. This control law is similar to the current 

control law determined by Caroll [15] for eccentricity change for electrodynamic tether 

propulsion. Gaylor determined the thrust angles required for the maneuvers and analyzed 

propellant usage. 

 Dewell et al. [24] examined dynamic optimization problems from the point of 

view of genetic search and applied genetic search techniques for optimizing orbital 
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trajectories involving low-thrust orbit transfer. They suggested that genetic search 

methods may be appropriate solution for nonsmooth problems and poor initial guess 

conditions. The problem was parameterized in terms of thrust vector direction in three 

axes and genetic search techniques are discussed to solve the problem. 

 Kluever [25] also discusses developing a simple guidance scheme for low thrust 

orbit transfers by using the perturbation equations. He optimized the thrust vector angles 

by taking the derivative of time rate of change orbital elements, semi-major axis, 

eccentricity and inclination, with respect to thrust vector angles and solving for the angles 

by letting the derivatives equal zero. These optimal control laws are then weighed by a 

quadric function to get the weighting functions for each orbital element. However, 

Kluever does not determine the weighting parameters. 

 Herbiniere et al. [26] describes a low thrust positioning strategy that can be used 

for low earth orbit constellation deployment in quasi-circular orbits. Pointing modes for 

thrust vector are considered to find thrust vector direction parameters to correct 

eccentricity and inclination errors under spacecraft’s pointing constraints. The longitude 

of ascending node and phase rendezvous are left to be performed during the initial drift 

phase of the spacecraft.  
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III. Methodology 

 
 
 
3.1 Modeling the Earth’s Magnetic Field 
 
 
 As mentioned in Chapter 2, Earth’s magnetic field can be modeled with the 

magnetic field of a sphere uniformly magnetized in the direction of a dipole axis. In this 

model, the dipole axis goes through the center of the Earth, and is offset from the 

rotational axis by 11.3°. This simple approximation can lead to errors as great as 30% in 

some locations. On the other hand, the error can be reduced to 10% by displacing the 

dipole axis about 400 km towards the western Pacific from the center of the Earth [9]. 
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Figure 3.1 Earth’s Magnetic Field Dipole Model 
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To keep the equations simple, the dipole axis is assumed to have zero offset from 

the Earth’s center (Figure 3.1) and the dipole axis is assumed to be inertially fixed. For 

the dipole model, the geomagnetic induction vector B is [4]; 

[ RRMM
m eeee ]

r
B ˆˆ,ˆ3ˆ

3 −=
µ

    (3.1) 

where mµ  is the magnetic moment of Earth’s dipole,  the unit vector of the dipole 

axis, 

Mê

rrêR =  the unit radial vector, r the distance from Earth’s center and ,  is the 

scalar product. The magnetic moment mµ  is 8.0711×106 Tesla/km3 [4]. 

 For convenience, a modified orbital element set is used where inclination, , and 

the argument of ascending node, , are measured with respect to the magnetic equatorial 

plane instead of geographic equatorial plane. In that case, the unit vector of the dipole 

axis can be written in an inertial frame aligned with dipole axis and magnetic equatorial 

plane as; 

i

Ω

[ ijkMe 100ˆ = ]      (3.2) 
 
 
 

3.2 Thrust 
 
 
 The force, F , on a charged particle, Q , moving in a magnetic field, B , with the 

velocity, υ  is [27] 

)( BQF ×= υ      (3.3) 

This equation can be written in differential form as 

)( BdQFd ×= υ     (3.4) 
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In the case of a current carrying conductor in an external magnetic field, the force 

exerted on electrons are transferred to the conductor they are confined to. The velocity of 

an electron moving through the electrodynamic tether can be written in terms of tether 

velocity, tυ , and electron velocity relative to the tether, eυ  

et υυυ +=      (3.5) 

Substituting Equation 3.5 into Equation 3.4, Equation 3.4 becomes, 

)()( BdQBdQFd et ×+×= υυ    (3.6) 

Since, current is ,  dtdQI /=

dtIdQ =      (3.7) 

As the net charge on the tether is zero, the number of ions is equal to the number of 

electrons and the net force created by tether velocity, tυ , integrates to zero. Omitting the 

first term in Equation 3.6 and substituting Equation 3.7 into Equation 3.6, 

))(( BIdtFd e ×= υ     (3.8) 

dtdl eυ=  is the elementary length in the direction of the current, I . 

 Assuming that the tether is straight and magnetic field along the tether is constant 

Equation 3.8 might be integrated to give 

)( BLIF ×=      (3.9) 

where  is the length of the tether. The tether is assumed to be perfectly aligned with the 

local vertical, therefore the vector for the tether current is 

L

LeL
r
rL Rˆ==     (3.10) 
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Substituting Equation 3.2 and Equation 3.10 into Equation 3.9, the force generated by the 

current in the electromagnetic tether is 

)ˆˆ(3 MR
m ee

r
IL

F ×=
µ

    (3.11) 

The perturbation equations for Classical Orbital elements will be in the form 

expressed in the orbital frame. The orthogonal unit vectors for this frame are the unit 

radial vector, r̂ , the unit vector tangential to unit radial vector in the orbital plane, , and θ̂

ω̂  unit vector perpendicular to these two and normal to the orbital plane. In order to 

substitute Equation 3.11 into perturbation equations for orbital elements, the unit vector 

for the dipole axis, e , is expressed in the orbital frame. The rotation matrix from inertial 

frame, , to orbital frame, , is 
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where ν  is the true anomaly, ω  is the argument of perigee and 

xc
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x

x
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sin

=
=

 

Then unit vector for the dipole axis, e , expressed in the orbital frame becomes Mˆ
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M
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Combining Equation 3.11 and Equation 3.13, the propulsive tether force is written in the 

orbital frame as, 
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 Looking at the above equation (Equation 3.14), some observations can be made 

immediately. Since the force is perpendicular to the current and therefore to the tether, 

there is no radial component of the force. Once again, it should be remembered that the 

tether is assumed to be perfectly aligned with the local vertical. This assumption is 

reasonable, because without the applied current, there are no major forces other than 

gravity and gravity gradient forces stabilizes the tether around the local vertical. 

Secondly, the force is perpendicular to the magnetic field lines; thus out-of-plane forces 

cannot be attained when the orbit is coplanar with the geomagnetic equator ( i ), 

similarly in-plane forces cannot be attained when the orbit is “polar” with respect to the 

magnetic field ( ). 

0=

90=i

 
 
3.3 Perturbation Equations 
 
 
 The orbital maneuvers are carried out by performing the desired changes in 

Classical Orbital Elements (COEs). In order to determine the form of the guidance law, 

the general perturbation equations [28] governing the evolution of the orbital elements 

are examined. The applied current is required to be in the form to have a secular change 

in the desired orbital element. The general perturbation equations that express the time 

rate of change in the COEs are as follows; 
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where 

  : Semi-major axis a

  : Eccentricity e

  : Inclination i

  : Argument of ascending node Ω

 ω  : Argument of perigee 

 M  : Mean anomaly 

  : Acceleration in the ra r̂  direction, along radial vector 

  : Acceleration in the wa ω̂  direction, normal to orbit plane 

  : Acceleration in the  direction, perpendicular to θa θ̂ r̂  and ω̂  

 3an µ=  : Orbital mean motion 
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 )  : Semilatus rectum 1( 2eap −=

 ph µ=  : Angular momentum per unit mass of satellite 

 The acceleration created by the tether force on the total satellite mass, , can be 

interpreted as the perturbing acceleration. Dividing Equation 3.14 by the total mass yields 

m
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Substituting the components of this perturbing acceleration into the general 

perturbation equations, the equations that govern the evolution of the orbital elements for 

a known current can be obtained: 
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For short periods of time, the radial distance to the spacecraft from the Earth’s center, r , 

is assumed to be Keplarian and can be written as 
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Substituting this expression into the general perturbation equations and collecting some 

of the terms the following expressions can be obtained for the change in orbital elements 

for any given current 
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3.4 Validity of the Equations 
 
 

The validity of the above equations can be verified by numerically integrating the 

equations. Therefore, two simulations are setup. The first simulation directly integrates 

the Equations 3.19. The second simulation uses the two-body equation and numerically 

integrates in Cartesian coordinates. The vector equation for the second simulation is 

par
r

r +−= 3

µ     (3.20) 
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where µ  is the Earth’s gravitational constant and mFa tetherp =

m

 is the acceleration 

produced by the tether force on the total system mass, . The corresponding scalar 

equations of motion in Cartesian coordinates are 

xpax
r

x ,3 +−= µ  

ypay
r

y ,3 +−= µ  

zpaz
r

z ,3 +−= µ     (3.21) 

The results of the two simulations are consistent hence proving the validity of the 

perturbation equations combined with the tether force. The source codes in Fortran can be 

found in Appendix A. Both simulations use a Runge Kutta 5/6 variable step integration 

with a tolerance of 1 × 10-10. 

These equations (Equations 3.19) can be integrated over time for a particular 

current to determine changes in orbital elements. The form of the current law is 

determined next. 

 
 

3.5 Current Law 
 
 
 To achieve the desired change in the orbital elements, the current in the tether is 

modulated as the electrodynamic tether orbits the Earth, since the tether force is directly 

proportional to the current. The first step in developing the current law is to find out the 

form of current that will result secular changes in the orbital elements. This can be done 

by examining the perturbation equations (Equations 3.19) and determining the current 
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wave that will yield an integral with a secular term. As a first approximation, the orbital 

elements ( ω,,,, Ωiea ) will be assumed constant since they vary slowly. Consequently, 

the changes in the orbital elements over a given a period of time are 
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Eliminating the higher order terms in  (which are small enough to be negligible for the 

LEO maneuvers applicable to this concept) these equations can be written in the 

following simpler form hence making it easer to spot the dominant terms, 

e
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It is desired to find a current form for each orbital element that will yield a secular 

change. The expression for the changes in each orbital element will be examined 

analytically and through a numerical simulation. The simulation in Cartesian coordinates 

mentioned in part 3.4 will be used for all of the orbital elements with the following 

parameters; 

Table 3.1 Simulation Parameters 
Total Satellite Mass 1000 kg 
Tether Length 15 km 
Applied Current 5 A 
Time of Flight 20 Orbits 

Semi-major Axis 8235 km 
Eccentricity 0.0285 
Inclination 5 deg 
Argument of Ascending Node 60 deg 
Argument of Perigee 60 deg 
Mean Anomaly 0 

Initial 

Orbital 

Elements 

Orbital Period 2 hrs. 3 min. 57 sec 
 
 
 

3.5.1 Semi-Major Axis.  The expression for the change in semi-major axis 

(Equation 3.24) is the only expression with a constant term in the integral. The cosine 

term under the integral will average out through the orbit period and will not make a 

significant contribution to the change in the semi-major axis.  
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    (3.24) 

Therefore, applying a constant tether current will yield a secular change in the 

semi-major axis (Figure 3.2). Applying this constant tether current, DC, following results 

can be obtained using the simulation (Figures 3.2-3.6) 
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 DC current has the desired effect on semi-major axis while not affecting argument 

of perigee and argument of ascending node. However, the higher order terms in e in the 

expressions for eccentricity (Equations 3.22) contribute secular terms to the integral. 

Likewise, DC current also causes a secular change in inclination because of the 

 term inside the integral. )(cos2 ων +
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Figure 3.2 Change in Semi-major Axis due to DC Current 
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Figure 3.3 Change in Eccentricity due to DC Current 
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Figure 3.4 Change in Inclination due to DC Current 

3-13 



0 5 10 15

x 104

60

60.5

61

61.5

Time [secs]

A
rg

um
en

t o
f P

er
ig

ee
 [d

eg
]

 
Figure 3.5 Change in Argument of Perigee due to DC Current 
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Figure 3.6 Change in Argument of Ascending Node due to DC Current 
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3.5.2 Eccentricity.  Similarly, examining the simplified expression for the change 

in eccentricity 
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    (3.25) 

it is observed that νcos  term will average out in time. A current law of 

νcosII ′=      (3.26) 

can be applied to attain a cos  term in the integral that will yield a secular change in 

eccentricity. The results of the simulation show that 

ν2

νcos current has the major affect on 

eccentricity (Figure 3.7) and there is a coupling with semi-major axis. When multiplied 

by this current law, the odd powers of νcos  terms in the expression for semi-major axis 

(Equations 3.22) yield even powers of νcos  to produce a secular change in semi-major 

axis (Figure 3.8). The effect of νcos current on inclination, argument of perigee and 

argument of ascending node averages out over a period (Figures 3.9-3.11). 
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Figure 3.7 Change in Eccentricity due to νcos  Current 
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Figure 3.8 Change in Semi-major Axis due to νcos  Current 
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Figure 3.9 Change in Inclination due to νcos  Current 
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Figure 3.10 Change in Argument of Perigee due to νcos  Current 
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Figure 3.11 Change in Argument of Ascending Node due to νcos  Current 

 
 

3.5.3 Inclination.  Looking at the simplified expression for the change in 

inclination 

∫ ++
−

=∆
ft

t

m dteI
enma

iL
i

0

)cos21)((cos
)1(

sin 2
5.224 νωνµ

   (3.27) 

and from the results of the DC current, it is seen that DC current has a major effect on the 

inclination as well as semi-major axis. However, another current form that has relatively 

smaller effects on the other orbital elements is required. Furthermore, the impact on the 

inclination by the DC current is desired to be compensated.  

 Proceeding with a similar approach to the above, 

[ )(2cos ]ων +′= II     (3.28) 
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form of tether current will provide the secular change in inclination (Figure 3.12) while 

not introducing any secular terms to the semi-major axis (Figure 3.13). With the help of 

the trigonometric expansion, ( ),  term in Equation 3.28 

can be written in terms of 

1cos22cos 2 −= αα

[ ])(2

)(cos2 ων +

cos ων + . The multiplication of the current law and this 

term gives cos  term that provides the secular change in the integral. [ )(22 ων + ]

Again, higher order  terms in the expression for eccentricity yield a minor 

secular effect on eccentricity (Figure 3.14). While the double angle terms inside the 

brackets in the expression for the change in argument of perigee result in a secular 

change (Figure 3.15), the argument of ascending node is not affected (Figure 3.16). 
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Figure 3.12 Change in Inclination due to cos[ )(2 ]ων +  Current 
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Figure 3.13 Change in Semi-major Axis due to cos[ )(2 ]ων +  Current 
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Figure 3.14 Change in Eccentricity due to cos[ )(2 ]ων +  Current 

3-20 



0 5 10 15

x 104

59.4

59.6

59.8

60

60.2

60.4

60.6

60.8

Time [secs]

A
rg

um
en

t o
f P

er
ig

ee
 [d

eg
]

 
Figure 3.15 Change in Argument of Perigee due to cos[ )(2 ]ων +  Current 
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Figure 3.16 Change in Argument of Ascending Node due to [ )(2cos ]ων +  Current 
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3.5.4 Argument of Ascending Node.  Likewise, the current law of 

[ )(2sin ]ων +′= II     (3.29) 

has the same effect on argument of the ascending node. Similar to the expression for 

inclination, )sin()cos( ωνων ++  term in the expression for argument of ascending node 

in Equations 3.23 can be written in terms of sin[ ])(2 ων +  since  

     ααα cossin22sin =  

Multiplying this term with the current law, sin  term can be acquired. This 

term has the secular effect on the integral (Figure 3.17).  

[ )(22 ων + ]
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Figure 3.17 Change in Argument of Ascending Node due to sin[ )(2 ]ων +  Current 
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Figure 3.18 Change in Semi-major Axis due to [ )(2sin ]ων +  Current 
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Figure 3.19 Change in Eccentricity due to sin[ )(2 ]ων +  Current 
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Figure 3.20 Change in Inclination due to sin[ )(2 ]ων +  Current 
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Figure 3.21 Change in Argument of Perigee due to [ )(2sin ]ων +  Current 
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 A negative drift occurs in the eccentricity and argument of perigee. The effect on 

the eccentricity is caused by the  terms that appear after the trigonometric 

expansion of the expression (Figure 3.19). On the other hand, the drift in the argument of 

perigee (Figure 3.21) is caused by 

ν22 cose

sin( )cos() ωνων ++e  term inside the brackets under 

the integral in the expression for the argument of perigee (Equations 3.22). The effects of 

this current law on semi-major axis and inclination are averaged out through the orbit. 

3.5.5 Argument of Perigee.  Finally, the current law 

νsinII ′=      (3.30) 

multiplies with the dominant νsin2  term in the expression for argument of perigee to 

produce a secular change. Fortunately, no significant coupling occurs with the other 

orbital elements. This can be seen clearly in the results of the simulation. All the changes 

in the other orbital elements are periodic over the orbit period and average out (Figure 

3.23-3.26) and there is a significant change in the argument of perigee providing the 

desired affect (Figure 3.22). 
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Figure 3.22 Change in Argument of Perigee due to νsin  Current 
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Figure 3.23 Change in Semi-major Axis due to νsin  Current 
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Figure 3.24 Change in Eccentricity due to νsin  Current 
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Figure 3.25 Change in Inclination due to νsin  Current 
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Figure 3.26 Change in Argument of Ascending Node due to νsin  Current 

 
 

To sum up, the current laws and their corresponding orbital elements are: 

 Current Law     Orbital Element 

- DC      Semi-major Axis 

 - νcos           Provides a positive Eccentricity 

 - νsin           secular change in  Argument of Perigee 

 [ ])(2cos ων +           Inclination ⇒

 [ )(2sin ]ων +      Argument of Ascending Node 

The above relations agree with those presented by Caroll [15]. The current form 

suggested by Caroll for phase change, M∆ , is a saw tooth wave, however saw tooth 

wave does not give satisfactory results and affects the other elements dramatically.  
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As expressed above there are couplings between the various current laws and the 

orbital elements. An applied current in the above form not only changes the desired 

orbital element but also have an undesired effect on the other elements. The non-

dominant terms in the integrals couple with other current laws to create a secular affect. 

Furthermore, these current laws are derived based on the assumption that the orbital 

elements are constant. A combination of these current laws will result in undesired effects 

because the constant approximation in this assumption begins to fail, as there are changes 

in multiple orbital elements. However, a combination of all five current laws can 

compensate the undesired effects in the results and minimize the error to a reasonable 

level. 

 The next step in developing the current control law is to combine the five current 

laws investigated above to perform simultaneous changes in the orbital elements and to 

reduce the effects of the couplings. Therefore, a superposition principle is assumed. 

Explicitly, a linear combination of the five independent currents laws is employed in 

order to execute an orbital maneuver between any two sets of five orbital elements. So 

the final form of the control law is 

 [ ] [( ))(2sin)(2cossincos 54321 ]ωνωννν +−+−++= XXXXXII avail  (3.31) 

where  is the available current and the  terms are the current coefficients that are 

to be calculated to maneuver the vehicle. 

availI iX

 The final step is to construct a guidance scheme that includes time of flight for the 

maneuver and the above current control law. 
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3.6 Guidance Scheme 
 
 
 
 The guidance scheme must determine the current coefficients, , and the time of 

flight for a given maximum available current and a set of changes in the orbital elements. 

The secular changes in the orbital elements are found by substituting the current control 

law (Equation 3.31) into the perturbation equations (Equation 3.21) and taking an 

averaged integral over one period of the orbit. The orbital elements are assumed to be 

constant except for the true anomaly, which is approximated by the mean anomaly, 

iX

nt=ν       (3.32) 

This yields five equations linear in the current coefficients, which can be written in the 

following matrix form: 

[ ] ∆=availIXtA     (3.33) 

where t is the time of flight, ∆  is the set of changes in the orbital elements, 























∆Ω
∆
∆
∆
∆

=∆
i

e
a

ω      (3.34) 

and X is the vector for the current coefficients, 























=

5

4

3

2

1

X
X
X
X
X

X      (3.35) 
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For the angular quantities, maneuvers greater than 180 degrees are performed by going 

the other way around (i.e. subtracting the absolute value from 360 and multiplying by the 

opposite sign.) 

The  element of the matrix in Equation 3.33 is computed by the averaged 

integral of perturbation equation for the orbital element that corresponds to ith element of 

the 

ijA

∆  vector with the current law that corresponds to jth element in the X  vector. The 

elements of the constant [  matrix are; ]A

∫ +
−

−=
P

m dte
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iL
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 (3.36) 

where nP π2=  is the period of the orbit. The current term in each element is 

underlined. Computing the integrals and rearranging the terms, the final form of the  

matrix is obtained (Table 3.2, Column 2). Furthermore, higher order  terms in the 

matrix can be neglected and the matrix becomes simpler (Table 3.2, Column 3). The error 

introduced by the simplification is reasonable and will be presented in the next chapter.  

[ ]A

e

The constant, , in the [  matrix is  C ]A

5.224 )1(8 emna
L

C m

−
=

µ
     (3.37) 
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Table 3.2 The Elements of the [  Matrix ]A
 Elements of  Matrix A Simplified Elements 

11A  )1()2438(cos2 224 eeeiCa −++−  )1(cos16 2eiCa −−  

12A  )1()43(cos8 22 eeiCae −+−  )1(cos32 2eiCae −−  

13A  0  0  

14A  [ ] )1()2cos()2cos()6(2 222 eiieCae −++−+ ωω  0  

15A  )1(cossin)6(cos8 222 eeiCae −+ ωω  0  

21A  )4(cos7 2 +− eiCe  iCecos28−  

22A  )25(cos4 2 +− eiC  iC cos8−  

23A  0  0  

24A  [ ])2cos()2cos()52( 2 ωω ++−+ iieCe  [ ])2cos()2cos(5 ωω ++− iiCe  

25A  ωωcossin)52(cos4 2 +eiCe  ωωcossincos20 iCe  

31A  ωωcossincos2 2 iCe−  0  

32A  ωωcossincos4 iCe−  ωωcossincos4 iCe−  

33A  eeeiC )cos24(cos2 222 ω++−  eiC cos8−  

34A  )10(cossincos2 2 +− eiC ωω  ωωcossincos20 iC−  

35A  )cos10cos4(cos2 222 ωω −−− eiC  )cos51(cos4 2 ω−− iC  

41A  )cos24(sin 222 ωeeiC ++  iC sin4  

42A  )cos21(sin2 2 ω+iCe  )cos21(sin2 2 ω+iCe  

43A  ωωcossinsin4 iCe−  ωωcossinsin4 iCe−  

44A  )cos1(sin2 22 ωeiC +−  iC sin2−  

45A  ωωcossinsin2 2 iCe−  0  

51A  )2sin(2 ωCe  0  

52A  )2sin(2 ωCe  )2sin(2 ωCe  

53A  )2cos(2 ωCe  )2cos(2 ωCe  

54A  0  0  

55A  )2( 2eC +−  C2−  
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 The A  diagonal terms are the dominant terms in the equation and most of the 

off-diagonal terms are multiplied by eccentricity. The equation is linear with respect to 

time due to averaging over an orbital period to retain the secular effects. This matrix 

equation consists of five equations for the five unknown current coefficients. The sixth 

unknown variable is the time of flight, TOF , and it is constrained by the maximum 

available current, , that can be run through the tether in the environment. 

ii

availI

 Given a set of desired orbital elements and the duration of the maneuver, TOF , 

Equation 3.33 can be solved for the current control law coefficients: 

[ ]∆= −11 A
TOFI

X
avail

     (3.38) 

For determining the duration of the maneuver, a desired value for the duration can 

be given. If the duration of the maneuver is too short, the maximum current required for 

the maneuver, , will exceed the maximum available current, . In this case, the 

current law coefficients and the duration of flight are recalculated. 

maxI availI

 Since the change in the orbital elements is linearly dependent on the TOF , the 

current coefficients can be scaled down by a constant factor and the TOF scaled up by 

the inverse of that same factor with the final orbit remaining unchanged to first order. So 

letting, 

maxI
I

XX avail
oldnew =  

avail
oldnew I

I
TOFTOF max=    (3.39) 
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the current constraint is enforced while satisfying Equation 3.15 and obtaining the same 

change in the orbital elements. 

 The maximum current required to carry out the maneuver, , can be calculated 

in three different ways. A numerical simulation of the maneuver would provide the most 

precise answer. Unfortunately, this approach is computationally cumbersome and time 

consuming. 

maxI

The maximum current can be computed by finding the maximums of the current 

expression Equation 3.31. Analytical derivatives of the current expression with respect to 

true anomaly and argument of perigee can be set to zero to find the maximum points, 

then the expression can be evaluated for the points that lie in the range of the orbital 

maneuver and the end points of this range. Taking the derivatives of the current 

expression: 

[ ] [{ })(2cos2)(2sin2cossin 5432 ωνωννν
ν

+−+++−=
∂
∂ XXXXII

avail ]  

[ ] [{ )(2cos2)(2sin2 54 ωνων
ω

+−+=
∂
∂ XXII

avail ]}     (3.40) 

and setting these expressions to zero, a set of equations can be obtained to give out four 

sets of results. Letting, 

3XIa avail=  

2XIb avail=  

[ ] 4235
2
3

2
2 2)( XXXXXXIc avail −−=  

[ ] 5234
2
3

2
2 2)( XXXXXXId avail +−=      (3.41) 
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solutions to the equations are; 

ν ω

1 ),(tan 1
2 ba− ),(tan5.0 1

2 dc−

2 ),(tan 1
2 ba− ),(tan5.0 1

2 dc −−−

3 ),(tan 1
2 ba −−− ),(tan5.0 1

2 dc−

4 ),(tan 1
2 ba −−− ),(tan5.0 1

2 dc −−−

 

 Finally, a crude method of enumeration of the currents for a range of true 

anomaly and argument of perigee can be used to evaluate the maximum current. The true 

anomaly is varied from 0° to 360° while the argument of perigee can range from the initial 

value to the target value of the maneuver. For the simulation of the maneuvers, this 

approach is used. 

For maneuvers with a large change in the orbital elements, the first order 

approximation that the orbital elements are constant for the integration of Equation 3.19 

is not valid. Unfortunately, an accurate solution of these integrals would need to be 

numerical, which would then make it impossible to develop analytic expressions to 

calculate the coefficients of the current law. Since the objective of this study is to produce 

computationally efficient and robust design for concept exploration, the simple 

approached presented in this chapter is taken. 

However, to improve the accuracy of the guidance scheme, the maneuver can be 

broken into a number of segments. By calculating the control law several times during 

the maneuver, the guidance scheme has an opportunity to correct the errors introduced by 

the inexact integrals. This guidance scheme employed is depicted in Figure 3.27. 
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For each segment, the control law coefficients and the time of flight to perform 

the rest of the maneuver in a single step is calculated. After flying for the period of the 

segment, this procedure is repeated for the next segment. 

Calculate Imax 

Finish after  
nth segment 

Fly jth segment 

Modify 
Control and TOF 

to meet Iavail 

Calculate 
Control Law 

Guess TOF 

j=j+1 
TOF=TOF-TOFj 

Figure 3.27 Guidance Scheme 

3.7 Numerical Solution 

 
 An exact solution for the current control law can be determined by setting up the 

problem in a non-linear from and numerical non-linear equation solvers can be used. For 
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this purpose, the numerical non-linear equation solver in IMSL Math Libraries is used 

with Fortran. The equations for the problem are 

     finalett aaF −= arg1

finalett eeF −= arg2  

finalettF ωω −= arg3  

finalett iiF −= arg4  

finalettF Ω−Ω= arg5  

max6 IIF available −=      (3.42) 

 where I  is the available current to the system and is the maximum 

current required for the maneuver. Basically, expressions  through  are the errors 

encountered at the end of the maneuver. All six equations are required to converge to 

zero for an exact answer. 

available maxI

1F 5F

 A very good initial guess for the current law coefficients is essential to achieve 

the convergence for the solver because of the problem’s complexity. Furthermore, the 

computational load of such a solver is relatively too large, since the maneuver must be 

simulated for each step of the solver. 

 The current law coefficients calculated by the control law determined in this study 

can be used as a good initial guess for such a solver. 
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IV. Analysis and Results 

 
 
 

4.1 Simulation Tools 
 
 

A set of computer programs has been developed and used to validate the guidance 

scheme for arbitrary maneuvers in LEO. These programs consist of a graphical user 

interface (GUI) for simulation inputs, a numerical simulation and a program for the 

visualization of the outputs. The communication between the programs is managed 

through intermediate files. Brief information about the tools is presented below. 

 
 

Figure 4.1 Graphical User Interface 
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4.1.1 Graphical User Interface.  A simple GUI for the simulation is developed 

using Visual Basic Programming Language 6.0. A screenshot of the user interface is 

given in Figure 4.1. This interface allows the user to input the required parameters, run 

the simulation and get the summarized outputs of the simulation. The required inputs for 

the simulation are the satellite parameters (total satellite mass, , tether length, , 

maximum available current, ), Classical Orbital Elements (COEs) of the initial and 

the target orbit and the number of steps for the guidance scheme. The parameters can be 

entered into the associated fields in the interface or can be acquired from previously 

saved files. 

m L

availI

4.1.2 Numerical Simulation.  A numerical simulation is used to validate the 

current control law and the guidance scheme. The simulation is based on the two-body 

problem, which excludes the natural perturbations. The equation of motion for the 

electrodynamic tether system is 

     F
m

r
r

r 1
3 +−= µ     (4.1) 

where F  is the perturbing force due to the electrodynamics and  is the system mass 

(Equation 3.18). The corresponding scalar equations of motion (Equation 3.19) are 

integrated using a Runge Kutta 5/6 variable step integration with a tolerance of 1 . 

m

1010−×

 The parameters for the satellite are read from a file (satellite.coe). The initial 

values and the target values of the COEs are read from separate files (initial.coe, 

target.coe) and the required change in the COEs are calculated. Following the guidance 

scheme described in Chapter 3, the satellite’s motion is simulated by the numerical 

integration and the results are written in 5 different files with a hundred second sample 
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interval for each output. The results include position (position.2bp) and velocity 

(velocity.2bp) in kilometers in Cartesian coordinates relative to an earth centered inertial 

coordinate frame, the corresponding simulation time (time.2bp) in seconds, the history of 

the current used trough the maneuver (curhist.2bp) in amperes and the history of the 

thrust generated by the electrodynamic tether system (thist.2bp) in kilonewtons. Another 

set of results generated by the simulation consist of the current coefficients for each step 

of the guidance scheme (currents.txt) and the summary of the COEs, time elapsed and the 

error at the end of the simulation (output.txt). 

This simulation is developed under DIGITAL Visual Fortran 5.0 and the IMSL 

Math Libraries are used for the numerical integration. The Fortran code of this simulation 

is given in the Appendix B. 

4.1.3 Visualization.  Another simple program running under MATLAB plots the 

results as the orbital trajectory and the change in the orbital elements. The outputs are 

read from the files created by the simulation and converted to orbital elements and 

presented in individual plots. 

 

4.2 Orbital Maneuvering Examples 
 
 
 The validity and the accuracy of the guidance scheme are demonstrated with 

orbital maneuvering examples by the use of the above simulation tools. In addition to the 

examples, the affect of using the simplified  matrix (Table 3.2, Column 3) mentioned 

in Chapter 3 will be analyzed and presented. 

A
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4.2.1 Orbit Raising.  The first example demonstrates an increase in the semi-

major axis of a LEO satellite at an altitude of 800 km. The satellite is initially positioned 

in an orbit at this altitude with an inclination of 25 degrees with respect to the 

geomagnetic equator and an eccentricity of 0.02. The total mass of the satellite and the 

tether system is 1000 kg with a maximum available current of 5A and a tether length of 

15 km [2]. The desired changes in the orbital elements are 

     km 200=∆a

    0=∆Ω=∆=∆=∆ ie ω     (4.2) 

 To achieve this maneuver, the control law and the time of flight are 

[ ] [ ])(2sin0)(2cos22.3sin07.0cos15.061.1 ωνωννν +−++++−=I  

TOF = 60 hr 20 min        (4.3) 

There are two significant terms in this current control law. The DC current is the major 

component of the current law for semi-major axis change while the drift in inclination 

caused by the DC current is compensated by the cos[ )(2 ]ων +  current. To keep the 

inclination constant the [ )(2cos ]ων +  current is considerably large.  
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Figure 4.2 Orbital Trajectory for Orbit Raising 

 
 

 The simulation yields the results in Figures 4.2-4.6 for this control law. The semi-

major axis exhibits the desired linear behavior (Figure 4.3). In Figure 4.4, the current 

shows the A DC offset with a 3.22A sinusoidal oscillation. The period of the 

oscillation is approximately half the orbital period, so this oscillation cycles through 

many oscillations. The current behavior for the first 2 orbits is shown in Figure 4.5a. 

Looking at Figure 4.4, the system has reached but not exceeded the –5A current level, 

which is the maximum current available to the system. The thrust generated by the tether 

has a parallel behavior to the current. The thrust history for the first 2 orbits is given in 

Figure 4.5b. These plots illustrate the potential difficulty in numerically optimizing the 

trajectory for electrodynamic maneuvers. To capture the rapidly changing control, many 

parameter optimization techniques would require thousands of degrees of freedom.  

61.1−
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Figure 4.3 Change in Semi-major Axis for Orbit Raising  
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Figure 4.4 Tether Current History for Orbit Raising  
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Figure 4.5 First Two Orbits of Orbit Raising (a) The Current Behavior for First Two 
Orbits (b) Tether Thrust for First Two Orbits 

  

The absolute error in the final orbital elements for the orbit raising is 

 km   58.2−=∆ erra 00053.0−=∆ erre 86.0−=∆ errω

       (4.4) 00046.0−=∆ erri 00016.0−=∆Ωerr

The error is due to the inexact integration used in the current control law calculation. 

Better performances can be achieved if the guidance is employed in several phases. The 

same orbit raising maneuver was simulated with 6 separate calculations of the control law 

spaced out roughly 10 hours apart during the maneuver. The currents employed through 

the maneuver are close to the ones in performing the maneuver in a single step and the 

semi-major axis shows the same linear behavior (Figure 4.6a). But the final error is 

significantly improved: 

 km   04.0−=∆ erra 00018.0−=∆ erre 22.0−=∆ errω

       (4.5) 00020.0−=∆ erri 00066.0−=∆Ωerr

The behaviors of some of the orbital elements are shown in Figure 4.6a-c. 
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(c) (d) 

 
Figure 4.6 Orbital Raising with 6 Steps (a) Change in Semi-major Axis (b) Change in 

Eccentricity (c) Change in Inclination (d) Current Behavior for the First Two 
Orbits 

 
 

4.2.2 Inclination Change.  The same initial orbital elements and satellite 

parameters used in the orbit raising example are input to the simulation for an inclination 

change of 5 deg. The desired changes in the five orbital elements are 

     5−=∆i

    0=∆Ω=∆=∆=∆ ωea     (4.6) 

The control law and the required time of flight for the maneuver are 
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[ ] [ ])(2sin0)(2cos89.4sin11.0cos06.00 ωνωννν +−+−−−=I  

TOF = 1067 hr 44 min       (4.7) 

This maneuver takes almost 1.5 months because at this inclination the tether force 

component perpendicular to the orbital plane is relatively small since the tether force is 

always perpendicular to the electromagnetic field lines. As a result of the tether force’s 

being perpendicular to the electromagnetic field lines, at lower inclinations in-plane 

forces are greater than the out-of-plane forces and the opposite is true for high 

inclinations. Therefore, in plane maneuvers such as changing eccentricity, argument of 

perigee and semi-major axis are most effective at lower inclinations and out of plane 

maneuvers such as inclination and argument of ascending nodes change are most 

effective at high inclinations. Performing the same maneuver for a similar satellite-orbit 

setup with 80° of initial inclination takes only 458 hours, 43% of the time of flight for the 

original maneuver.  
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Figure 4.7 Inclination Change 
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Figure 4.8 Orbital Trajectory for Inclination Change 

 
 

 Figure 4.8 shows the orbital trajectory through the maneuver and the resulting 

change in the inclination is depicted in Figure 4.7. The errors in the final orbital elements 

are 

   km   44.0=∆ erri 15.2−=∆ erra 005.0=∆ erre

50.37=∆ errω       (4.8) 00044.0−=∆Ωerr

The errors introduced in this maneuver are significantly higher than the results of the 

orbit raising example. This is due to appearance of inclination in almost every element of 

the  matrix (Table 3.2). As inclination changes, the approximation of assuming the 

orbital elements constant for the integration of the perturbation equations begins to fail. 

Examining Figure 4.7 carefully, it is seen that the long-term behavior of the inclination is 

no longer linear. The argument of perigee is one of the sensitive orbital elements and 

changing the argument of perigee takes less time. Hence, the error can be reduced by 

breaking the maneuver into a number of steps. 

][A
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 Performing the same maneuver in 20 steps results in considerable improvement in 

not only the error in argument of perigee but on other three orbital elements. Each phase 

of the maneuver takes approximately 61 hours. Considering the guidance computations 

have to be resulted in every 61 hours, the computational load is still very reasonable even 

for space rated hardware. The final orbit is much closer to the targeted orbit: 

   km   002.0=∆ erri 38.0−=∆ erra 0007.0=∆ erre

79.2=∆ errω        (4.9) 0016.0−=∆Ωerr

The changes in eccentricity and the argument of perigee demonstrate the error 

correction by multi-phase maneuvering (Figures 4.9-4.10). 
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Figure 4.9 Change in Eccentricity for 20 Step Inclination Change Maneuver 
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Figure 4.10 Change in Argument of Perigee for 20 Step Inclination Change Maneuver 

 

 The results of the maneuver performed with the initial inclination of 80° 

mentioned above show the dependency of the error on the initial orbital elements. The 

maneuver is executed in a single step. The errors are significantly less compared to the 

results of the single step maneuver at 25° of inclination: 

   km   048.0=∆ erri 098.0−=∆ erra 00067.0=∆ erre

865.3=∆ errω       (4.10) 0010.0=∆Ωerr
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4.2.3 General Orbit Change.  In this example the guidance scheme and the 

electrodynamic tether system is used to achieve a simultaneous change in all orbital 

elements. This will show the superposition rule assumed in Equation 3.31 is valid. The 

electrodynamic tethered satellite is supposed to be servicing Landsat-4, Landsat-5 and 

Landsat-7 satellites. The electrodynamic tethered satellite is initially co-orbital with the 

Landsat-5 satellite and will transfer to the Landsat-7 satellite. After servicing the 

Landsat-7 satellite, the electrodynamic tethered satellite will maneuver to meet the 

Landsat-4 satellite. The orbital elements of the satellites are [29] 

Landsat-5: km     5.70805 =a 0.0010915 =e 293.21125 =ω

     98.17635 =i 115.58855 =Ω

Landsat-7: km     6.70807 =a 0.0004917 =e 38.68047 =ω

     98.21077 =i 118.24137 =Ω

Landsat-4: km    7.69594 =a 0.0081344 =e 226.2668 4 =ω

        (4.11) 98.23364 =i 126.07364 =Ω

 The first maneuver is from Landsat-5 satellite to Landsat-7 satellite. The 

electrodynamic tether system must perform the following orbital maneuvers 

 km     1.0=∆a -0.0006=∆e 4692.105=∆ω

        (4.12) 0344.0=∆i 6528.2−=∆Ω

The control law and the time of flight to perform these simultaneous maneuvers are 

[ ] [ ])(2sin629.4)(2cos057.0sin356.0cos10.0001.0 ωνωννν +++++−=I  

TOF = 244 hr 31 min        (4.13) 
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Figure 4.11 General Orbital Maneuver Between Landsat-5 and Landsat-7 (a) Change 

in Semi-major Axis (b) Change in Eccentricity (c) Change in Inclination  
(d) Change in Argument of Perigee (e) Change in Argument of Ascending 
Node (f) Current Behavior in First Two Orbits 
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Figure 4.12 Orbital Trajectory for the Maneuver Between Landsat-5 and Landsat-7 

A simulation with 4 segments in the guidance scheme yields the following errors 

for the first maneuver: 

 km     007.0−=∆ erra 0=∆ erre 75.0=∆ errω

       (4.14) 0006.0−=∆ erri 00012.0=∆Ωerr

The orbital trajectory is plotted in Figure 4.12; the changes in the orbital elements and the 

current history for the first two orbits are given in Figure 4.11. 

 The second maneuver is the orbital transfer from Landsat-7 satellite to Landsat-4 

satellite. Assuming that the electrodynamic tethered satellite system is co-orbital with 

Landsat-7 satellite, the maneuvers desired to be performed are 

 km    9.120−=∆a 0.00764=∆e 59.187=∆ω

         (4.15) 0223.0=∆i 83.7=∆Ω

The solution for the control law and time of flight for a single step maneuver are 

[ ] [ ])(2sin055.4)(2cos899.0sin077.0cos395.044.0 ωνωννν +−++−+−=I  

TOF = 823 hr 57 min        (4.16) 
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Figure 4.12 Orbital Trajectory for the Maneuver Between Landsat-7 and Landsat-4 

 
 

 The first maneuver was flown in 4 segments and the time of flight for each 

segment was approximately 61 hours. A simulation with 12 segments that corresponds to 

68 hours for each segment is run for the second maneuver therefore roughly the same 

computational load is put in. The orbital trajectory of the maneuver is plotted in Figure 

4.13. The errors at the end of the transfer are 

 km     024.0=∆ erra 0=∆ erre 22.1=∆ errω

       (4.17) 0016.0−=∆ erri 0026.0−=∆Ωerr
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Figure 4.14 Current Levels for the Maneuver Between Landsat-7 and Landsat-4 
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Figure 4.15 General Orbital Maneuver Between Landsat-7 and Landsat-4 (a) Change 

in Semi-major Axis (b) Change in Eccentricity (c) Change in Inclination  
(d) Change in Argument of Perigee (e) Change in Argument of Ascending 
Node 
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The corrections made in the current control law throughout the maneuver at each 

segment are given in Figure 4.14. The changes obtained in the five orbital elements are 

given in Figure 4.15. Note that, even the current level of νsin  current law, which 

corresponds to argument of perigee, is significantly altered through the maneuver (Figure 

4.14), the change in argument of perigee has a linear-like behavior. This is due to the fact 

that the changes in orbital elements determine the level of current needed to have the 

same rate of change in a particular orbital element. 

4.2.4 Simplified Matrix.  As explained in Chapter 3, a more compact form of the 

matrix can be constructed by neglecting the higher terms of eccentricity, e . The second 

maneuver in general orbit change example will be simulated using the simplified matrix 

for the current control laws and the guidance scheme. The matrix is given in Table 3.2, 

Column 3. 

 Using the same initial and target orbital elements the simplified matrix gives 

almost the same current control law and the time of flight. The current coefficients are the 

same to the fourth digit after the point. A twelve-step guidance scheme introduces an 

additional 1 410−× ° error in inclination and the argument of ascending node in the final 

orbit.  

These results show that the computational load can be even more reduced by the 

use of this simplified matrix. 
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4.3 Numerical Solution to the Problem 
 
 
 The non-linear solution mentioned in Chapter 3 is implemented in Fortran with 

the IMSL Math Libraries. The non-linear equation solver used in this implementation is a 

variation of Newton's method, which uses a finite-difference approximation to the 

Jacobian and takes precautions to avoid large step sizes or increasing residuals. Basically, 

the solver system starts with an initial guess and runs the simulation for the results. 

Comparing the results, a new set of currents is produced by the solver for the next step. 

The source code of the nonlinear solution implementation is given in Appendix C. 

 An arbitrary initial guess to the solver doesn’t make any progress. Therefore, the 

results obtained from the current control law determined in this study are used as the 

initial guess for the non-linear equation solver. Unfortunately, even with these initial 

guesses and big tolerances given to the solver, the equation solver failed to converge to 

an answer for most of the problems including the general orbit change examples above. 

 The solver converged on an answer for a much simpler orbital maneuver with a 

time of flight of 197 hours. The computational cost of the system for a tolerance of 

 is more than 8 central processing unit minutes on a 900 MHz computer, which is 

a very large computation.  

3101 −×

 These results show that the non-linear solution is not robust and requires a large 

amount of computations. Furthermore, a very good initial guess is required. 
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V. Conclusions and Future Research 

 
 
 

5.1 Conclusions 
 
 

The current control law and guidance algorithm developed in this study is capable 

of performing different orbital maneuvers for systems using electrodynamic tether 

propulsion. The current control law relates the tether current modulation to the satellite’s 

location in its orbit. The guidance scheme developed on this current control law can 

change the orbit size, shape and plane simultaneously to achieve a desired orbital 

maneuver. This guidance scheme works most effectively if the maneuver is broken up 

into several phases allowing for corrections on the current laws to compensate the errors 

introduced by the approximate solution to the general perturbation equations.  

It is important to stress that the trajectories generated by this guidance scheme are 

not optimal, since the goal of this study was to keep the calculations as simple as 

possible. There is no iterative calculation or numerical simulation in the guidance 

equations. The simplicity of the guidance scheme and the minimal computational load 

required enable implementation of this scheme in an onboard system. This also allows 

rapidly generating many trajectories in a small period of time for concept exploration or 

mission planning. 

Using non-linear equation solvers to determine an exact solution to the current 

control law showed that such a solver requires a very good initial guess, which can be 

provided by the guidance scheme presented here. However, the non-linear solution 
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involves large computational load and is not robust enough for an onboard 

implementation. 

 

5.2 Future Research 
 
 
 The current control law and the guidance scheme presented in this study are 

developed under several assumptions. These assumptions need to be relaxed in order to 

provide more accurate evaluations of the feasibility of the electrodynamic tether 

maneuvering concept. Some issues need to be addressed in future research are pointed 

out in the following paragraphs. 

As mentioned above, the trajectories generated by the guidance scheme are not 

optimal. A future study on adapting suitable optimization methods to this problem could 

provide more cost-effective solutions.  

There is an aerodynamic drag force caused by the tether and plasma interaction 

that needs to be considered in determining the spacecraft’s acceleration. Hence the 

electrodynamic tether propulsion concept is applicable in low earth orbits because of the 

plasma environment requirements, the drag force is considerable. Furthermore, the 

Lorentz force generated by the tether-magnetic field interaction should include the force 

generated by the orbital velocity of the tether. 

The calculation of amount of current that can be flown through the tether needs to 

consider the physics of the space plasma. As the plasma density changes with the altitude 

and location, the amount of current that can be run through the plasma varies although the 

current loss due to the electron density drop can be compensated to a degree by voltage 
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adjustments. Additionally, there would be a generated EMF on the tether that needs to be 

overcome by the voltage driving the current that will limit the tether current. 

The tether is assumed to be straight and perfectly aligned with the local vertical. 

However, the forces on the tether will cause significant bending on the tether unless a 

more sophisticated current control scheme is use. 

Finally, the earth’s oblateness and the rotation of the magnetic dipole in the 

inertial frame should be included in the models used to derive the guidance equations. 

The dipole’s rotation with earth needs to be accounted for in the guidance equations. 

Including the oblateness, the effects of the precision of the line of nodes and apsides on 

the maneuver could potentially be offset by the electrodynamic tether. 
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Appendix A. Validity of the Equations – Fortran Simulation 
 
 

A.1 Tether Force Perturbation Simulation in Cartesian Coordinates 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C TetherForceSimulationXYZ.f90
C
C SIMULATION ALGORITHM FOR TETHER FORCE PERTURBATION
C IN CARTESIAN COORDINATES
C
C Lt Hakan San - AFIT/ENY/GA-02M
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

implicit none
parameter( mxparm=50,neq=6 )
integer mxparm,neq,ido, i
double precision x(neq),param(mxparm),t,tend,tol
double precision n, a, tf, hr, min, sec

double precision mu, mum, m, L, Ic, pi, currents(5), ccI
common mu, mum, m, L, Ic, n, pi, currents, ccI

external divprk, fcn, cross, norm

pi = 3.14159265358979323846264338327950288419716939937510d0

tol=1.d-10 ! Numerical Integration Tolerance

C Parameters
mu=3.986d5 ! Earth's Gravitaional Constant
mum=8.0711d6 ! Earth's Magnetic Dipole Moment
Ic=-5.d0 ! Applied Tether Current
L=15.d0 ! Tether Length
m=1000.d0 ! System Mass

t=0.d0

C Read Initial Position and Velocity From File (Cartesian Coordinates)
write (*,*) 'initial position and velocity'
i=1
open (1, FILE = 'initial.2bp')
do while (.NOT. (eof(1) .OR. (i==7)))

read (1,*) x(i)
write (*,*) x(i)
i=i+1

end do
close(1)

C Read Current Law Coefficients and Time of Flight from File
write (*,*) 'currents'
i=1
open (2, FILE = 'currents.2bp')
do while (.NOT. (eof(2) .OR. (i==6)))

read (2,*) currents(i)
write (*,*) currents(i)
i=i+1

end do
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write (*,*) 'Time of Flight'
read (2,*) tf
hr=int(tf/3600)
min=int(mod(tf,3600.d0)/60)
sec=tf-hr*3600-min*60
write (*,*) tf
write (*,*) hr, 'hr', min, 'min', sec, 'sec'
close(2)

C Open Output Files
C Position

open(10,file='../position.2bp', STATUS='REPLACE')
C Velocity

open(20,file='../velocity.2bp', STATUS='REPLACE')
C Time

open(30,file='../time.2bp', STATUS='REPLACE')
C Current History

open(40,file='../curhist.2bp', STATUS='REPLACE')

ido=1
param(4)=10000000.d0 ! Maximum Number of Iterations for

! Numerical Integrator

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c START INTEGRATION LOOP
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

do 100 tend=0.d0,tf,100.d0
call divprk (ido,neq,fcn,t,tend,tol,param,x)

C Write Outputs to Files
write(10,*) x(1),x(2),x(3)
write(20,*) x(4),x(5),x(6)
write(30,*) t
write(40,*) ccI

100 continue

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c END INTEGRATION LOOP
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

close(10)
close(20)
close(30)

stop
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C EQUATIONS OF MOTION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine fcn(neq,t,x,xd)

implicit none

integer neq
double precision t, x(neq), xd(neq), r, em(3), Ict
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double precision ap(3), temp

double precision Hvec(3), rv(3), vv(3), tvec(3), evec(3), nvec(3)
double precision v, a, e, i, w, Om, nu

double precision mu, mum, m, L, Ic, n, as, pi, currents(5), ccI
common mu, mum, m, L, Ic, n, pi, currents, ccI

double precision norm, dot
double precision I1, I2, I3, I4, I5

double precision k1, k2, k3, k4

em=[0.d0, 0.d0, 1.d0] ! Earth's Magnetic Dipole Axis

C Convert Position and Velocity Classical Orbital Elements

rv=[x(1), x(2), x(3)] ! Position Vector
vv=[x(4), x(5), x(6)] ! Velocity Vector
r=norm(rv)
v=norm(vv)

a=-mu/2.d0/(v**2.d0/2.d0-mu/r) ! Semi-major Axis

call cross(rv, vv, Hvec)
call cross(vv, Hvec, tvec)

evec=(tvec/mu-rv/r) ! Eccentricity Vector

e=norm(evec) ! Eccentircity

i=dacos(Hvec(3)/norm(Hvec)) ! Inclination

C If Inclined Orbit, Calculate Line of Nodes
if (dabs(i)>1.d-13) then

nvec=[-Hvec(2), Hvec(1), 0.d0]/norm([-Hvec(2), Hvec(1), 0.d0])
end if

C No Eccentricity and Inclination Case
if (dabs(e)<1.d-13 .AND. (dabs(i)<1.d-13)) then

w=0.d0 ! Argument of Perigee
Om=0.d0 ! Argument of Line of Nodes
nu=datan2(rv(2),rv(1)) ! True Anomaly

C No Eccentricity Case
else if (dabs(e)<1.d-13) then

Om=datan2(nvec(2),nvec(1))
w=0.d0
nu=dacos(dot(nvec,rv)/r)
if (rv(3)<0.d0) nu=-nu ! Quadrant Check

C No Inclination Case
else if (dabs(i)<1.d-13) then

Om=0.d0
w=datan2(evec(2),evec(1))
nu=real(dacos(dot(evec,rv)/e/r))
if (dot(rv,vv)<0.d0) nu=-nu

C Inclination and Eccentricity NON-Zero
else
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Om=datan2(nvec(2),nvec(1))
w=dacos(dot(nvec,evec)/e)
if (evec(3)<0.d0) w=-w
as=dot(evec,rv)
as=as/e/r

! The 'as' value must be smaller than zero (Fortran Error)
if (as>1.d0) then

as=1.d0
end if

nu=dacos(as)
if (dot(rv,vv)<0) nu=-nu

end if

I1=currents(1) ! Current Law Coefficients
I2=currents(2)
I3=currents(3)
I4=currents(4)
I5=currents(5)

C Current Law Super Position
Ict=Ic*(I1+I2*dcos(nu)+I3*dsin(nu)-I4*dcos(2.d0*(nu+w)))
Ict=Ict+Ic*(-I5*dsin(2.d0*(nu+w)))
ccI=Ict ! For Current History

C Perturbing Tether Acceleration
temp=(Ict*L/m)*(mum/r**3.d0)*(1.d0/r)
ap=[temp*rv(2), -temp*rv(1), 0.d0]

C Two Body Problem Equations of Motion
xd(1)=x(4)
xd(2)=x(5)
xd(3)=x(6)
xd(4)=-mu*x(1)/r**3.d0+ap(1)
xd(5)=-mu*x(2)/r**3.d0+ap(2)
xd(6)=-mu*x(3)/r**3.d0+ap(3)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Cross Product
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine cross(v1, v2, v3)

implicit none

double precision v1(3), v2(3), v3(3)

v3(1) = v1(2) * v2(3) - v1(3) * v2(2)
v3(2) = v1(3) * v2(1) - v1(1) * v2(3)
v3(3) = v1(1) * v2(2) - v1(2) * v2(1)

return
end
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Dot Product
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function dot(v1, v2)
implicit none

double precision v1(3), v2(3)

dot=v1(1)*v2(1)+v1(2)*v2(2)+v1(3)*v2(3)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Magnitude
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function norm(v3)
implicit none

double precision v3(3)

norm=dsqrt(v3(1)**2.d0+v3(2)**2.d0+v3(3)**2.d0)

return

end
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A.2 Direct Numerical Integration of Perturbation Equations 
 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C TetherForceSimulationCOE.f90
C
C SIMULATION ALGORITHM FOR TETHER FORCE PERTURBATION
C DIRECT INTEGRATION OF PERTURBATION EQUATIONS
C
C Lt Hakan San - AFIT/ENY/GA-02M
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

implicit none
parameter( mxparm=50,neq=6 )
integer mxparm,neq,ido, I
double precision x(neq),param(mxparm),t,tend,tol
double precision n, a, hr, min, sec, tf

double precision mu, mum, m, L, Ic, pi, currents(5), Eold
common mu, mum, m, L, Ic, n, pi, currents, Eold

external divprk, fcn

pi = 3.14159265358979323846264338327950288419716939937510d0

tol=1.d-10 ! Numerical Integration Tolerance

C Parameters
mu=3.986d5 ! Earth's Gravitaional Constant
mum=8.0711d6 ! Earth's Magnetic Dipole Moment
Ic=-5.d0 ! Applied Tether Current
L=15.d0 ! Tether Length
m=1000.d0 ! System Mass

t=0.d0

C Read Initial Classical Orbital Elements
write (*,*) 'initial coes'
i=1
open (1, FILE = 'initial.coe')
do while (.NOT. (eof(1) .OR. (i==7)))

read (1,*) x(i)
write (*,*) x(i)
i=i+1

end do
close(1)

C Read Current Law Coefficients and Time of Flight from File
write (*,*) 'currents '
i=1
open (2, FILE = 'currents.2bp')
do while (.NOT. (eof(2) .OR. (i==6)))

read (2,*) currents(i)
write (*,*) currents(i)
i=i+1

end do
read (2,*) tf
close(2)
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write (*,*) 'Time of Flight'
hr=int(tf/3600)
min=int(mod(tf,3600.d0)/60)
sec=tf-hr*3600-min*60
write (*,*) tf
write (*,*) hr, 'hr', min, 'min', sec, 'sec'

Eold=0

C Open Output Files
C Semi-major Axis, Eccentricity, Inclination (radians)

open(10,file='../../aei.coe', STATUS='REPLACE')
C RAAN, Argument of Perigee, Phase (radians)

open(20,file='../../owm.coe', STATUS='REPLACE')
C Time

open(30,file='../../time.coe', STATUS='REPLACE')

ido=1
param(4)=10000000.d0 ! Maximum Number of Iterations for

! Numerical Integrator

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c START INTEGRATION LOOP
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

do 100 tend=0.d0,tf,100.d0
call divprk (ido,neq,fcn,t,tend,tol,param,x)

C Write Outputs to Files
write(10,*) x(1),x(2),x(3)
write(20,*) x(4),x(5),x(6)
write(30,*) t

100 continue

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c END INTEGRATION LOOP
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

close(10)
close(20)
close(30)

stop
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C EQUATIONS OF MOTION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine fcn(neq,t,x,xd)

implicit none

integer neq, bool
double precision t, x(neq), xd(neq), Ict

double precision r, a, e, i, w, Om, nu, M1, C, E1, Enew, at, aw,
& p, h, D
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double precision mu, mum, m, L, Ic, n, pi, currents(5), Eold
common mu, mum, m, L, Ic, n, pi, currents, Eold

double precision I1, I2, I3, I4, I5

a=x(1)
e=x(2)
i=x(3)
Om=x(4)
w=x(5)
M1=x(6)

C Calculate True Anomaly
E1=Eold
bool=1
do while (bool)

Enew=E1-(E1-e*dsin(E1)-M1)/(1.d0-e*dcos(E1))
if (dabs(Enew-E1)<1.d-12) then

bool=0
else

E1=Enew
end if

end do
Eold=E1

nu=2.d0*datan(dsqrt((1.d0+e)/(1.d0-e))*dtan(E1/2.d0))

I1=currents(1) ! Current Law Coefficients
I2=currents(2)
I3=currents(3)
I4=currents(4)
I5=currents(5)

Ict=Ic*(I1+I2*dcos(nu)+I3*dsin(nu)-I4*dcos(2.d0*(nu+w)))
Ict=Ict+Ic*(-I5*dsin(2.d0*(nu+w)))

n=dsqrt(mu/(a**3.0d0)) ! Mean Anomaly

r=a*(1.d0-e**2.d0)/(1.d0+e*dcos(nu)) ! Position

C=L*mum/(m*n*a**3.0d0*(1.0d0-e**2.0d0)**(5.0d0/2.0d0))
D=Ict*L*mum/(m*r**3.d0)

C Perturbing Tether Forces
at=-D*dcos(i)
aw= D*dcos(nu+w)*dsin(i)

C Semi-major Axis
xd(1)=(-2.0d0*C*dcos(i)/(1.0d0-e**2.0d0))*(1.0d0+e*dcos(nu))**4.0d0*Ict

C Eccentricity
xd(2)=(-C*dcos(i)/(a*e))*(2.0d0*e*dcos(nu)+e**2.0d0*dcos(nu)**2.0d0+
& e**2.0d0)*(1.0d0+e*dcos(nu))**2.0d0*Ict

C Inclinatio
xd(3)=(C*dsin(i)/a)*dcos(nu+w)**2.0d0*(1.0d0+e*dcos(nu))**2.0d0*Ict

C Argument of Ascending Node
xd(4)=(C/a)*dsin(nu+w)*dcos(nu+w)*(1.0d0+e*dcos(nu))**2.0d0*Ict
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C Argument of Perigee
xd(5)=(-C*dcos(i)/a/e)*(1.0d0+e*dcos(nu))**2.0d0*((2.0d0+
& e*dcos(nu))*dsin(nu)+e*dsin(nu+w)*dcos(nu+w))*Ict

C Phase
p=a*(1.d0-e**2.d0)
h=dsqrt(mu*p)
xd(6)=n+(C*dsqrt(1.d0-e**2.d0)*dcos(i)/(a*e))*(2.d0+e*dcos(nu))*(1.d0+
& e*dcos(nu))**2.d0*dsin(nu)*Ict

return

end
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Appendix B. Guidance and Simulation Algorithm for Orbital Maneuvers 
Using Electrodynamic Tethers 

 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C TetherForceSimulationCOE.f90
C
C GUIDANCE AND SIMULATION ALGORITHM FOR
C ORBITAL MANEUVERS USING ELECTRODYNAMIC TETHERS
C
C Lt Hakan San - AFIT/ENY/GA-02M
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

implicit none
integer mxparm,neq,ido
parameter( mxparm=50,neq=6 )
double precision x(neq),param(mxparm),t,tend,tol

double precision hr, min, sec
integer i, j, num_steps, step

double precision mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents(5,1)
common mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents

external divprk, fcn

double precision Icoes(6), Tcoes(6), Intcoes(6)
double precision tf, ts, tleft, Int_st, Int_et
double precision deltas(5,1), Intdeltas(5,1)
double precision intmatr(5,5)
double precision tempmatr(5,5)
double precision k, r1, r2, curI, maxI, pe
integer r10, r1f, stepper, stepperold
integer datetime(8)
logical dispmode, targetmode

intrinsic reshape

pi = 3.14159265358979323846264338327950288419716939937510d0

tol=1.d-10 ! Numerical Integration Tolerance

C Parameters
mu=3.986d5 ! Earth's Gravitaional Constant
mum=8.0711d6 ! Earth's Magnetic Dipole Moment

open (UNIT = 999 , FILE = 'USER')

C Read Satellite Parameters
open (1, FILE = 'satellite.coe')

read(1,*) Ic ! Maximum Available Current [A]
read(1,*) L ! Tether Length [km]
read(1,*) m ! System Mass [kg]

write(*,'(A10,F5.1,A20,F8.2,A15,F8.2)') ' Max. Cur: ',
& Ic,'Tether Length: ', L,'Sat. Mass: ',m

close(1)

Ic=-dabs(Ic)
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Imax=0
stepperold=0

C Output File for Screen Dump
open(101,file='output.txt', STATUS='REPLACE')

C Date/Time Stamp
call date_and_time(VALUES = datetime)
write(101,'(A9,I2,A1,I2,A1,I4,A3,I2,A1,I2,A1,I2,A9)') '------- ',
& datetime(2),'/', datetime(3),'/', datetime(1),' * ',
& datetime(5),':', datetime(6),':', datetime(7),'------- '

C Output File Applied Current Coeffiecients During the Manuever
open(102,file='currents.txt', STATUS='REPLACE')

C Date/Time Stamp
write(102,'(A9,I2,A1,I2,A1,I4,A3,I2,A1,I2,A1,I2,A9)') '------- ',
& datetime(2),'/', datetime(3),'/', datetime(1),' * ',
& datetime(5),':', datetime(6),':', datetime(7),'------- '
write(102,*)
write(102,*) ' Coefficients For Currents Applied (I=x*Iav) [ x ; I ] '
write(102,*) '-------------------------------------------------------'
write(102,*)

C Read Run Mode Info and Number of Steps to Perform the Manuever
open (1, FILE = 'runinfo.coe')

read(1,*) dispmode ! Runtime Display Mode
read(1,*) targetmode ! Target File Mode
read(1,*) num_steps ! Number of Steps

close(1)

C Read Initial Orbit Classical Orbital Elements (COEs)
open (1, FILE = 'initial.coe')

read(1,*) Icoes(1)
read(1,*) Icoes(2)
read(1,*) Icoes(3)
read(1,*) Icoes(4)
read(1,*) Icoes(5)
read(1,*) Icoes(6)

close(1)

C Output Initial COEs (deg) to Screen
write(*,*) 'Initial COEs '
write(*,*) '-------------------------------'
write(*,'(A21,F11.5)') 'Semi M. Axis : ',Icoes(1)
write(*,'(A21,F11.5)') 'Eccentricity : ',Icoes(2)
write(*,'(A21,F11.5)') 'Inclination : ',Icoes(3)*180.d0/pi
write(*,'(A21,F11.5)') 'Arg. of Perigee : ',Icoes(4)*180.d0/pi
write(*,'(A21,F11.5)') 'R. Ascending Node : ',Icoes(5)*180.d0/pi
write(*,'(A21,F11.5)') 'Phase : ',Icoes(6)*180.d0/pi
write(*,*)

C Output Initial COEs (deg) to File
write(101,*) 'Initial COEs '
write(101,*) '-------------------------------'
write(101,'(A21,F11.5)') 'Semi M. Axis : ',Icoes(1)
write(101,'(A21,F11.5)') 'Eccentricity : ',Icoes(2)
write(101,'(A21,F11.5)') 'Inclination : ',Icoes(3)*180.d0/pi
write(101,'(A21,F11.5)') 'Arg. of Perigee : ',Icoes(4)*180.d0/pi
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write(101,'(A21,F11.5)') 'R. Ascending Node : ',Icoes(5)*180.d0/pi
write(101,'(A21,F11.5)') 'Phase : ',Icoes(6)*180.d0/pi
write(101,*)

C Read Parameters Target Orbit COEs

if (targetmode) then ! Target Orbit COEs

write(*,*) '.......mode 1: reading target.coe......'
write(101,*) '.......mode 1: reading target.coe......'
open (1, FILE = 'target.coe')

read(1,*) Tcoes(1)
read(1,*) Tcoes(2)
read(1,*) Tcoes(3)
read(1,*) Tcoes(4)
read(1,*) Tcoes(5)
read(1,*) Tcoes(6)

close(1)

else ! Orbit Change (Delta COEs)

write(*,*) '.......mode 0: reading delta.coe.......'
write(101,*) '.......mode 0: reading delta.coe.......'
open (1, FILE = 'delta.coe')

read(1,*) Intcoes(1)
read(1,*) Intcoes(2)
read(1,*) Intcoes(3)
read(1,*) Intcoes(4)
read(1,*) Intcoes(5)
read(1,*) Intcoes(6)

close(1)

Tcoes(1)=Icoes(1)+Intcoes(1)
Tcoes(2)=Icoes(2)+Intcoes(2)
Tcoes(3)=Icoes(3)+Intcoes(3)
Tcoes(4)=Icoes(4)+Intcoes(4)
Tcoes(5)=Icoes(5)+Intcoes(5)
Tcoes(6)=Icoes(6)+Intcoes(6)

end if

C Output Target COEs (deg) to Screen
write (*,*) 'Target COEs '
write (*,*) '-------------------------------'
write(*,'(A21,F11.5)') 'Semi M. Axis : ',Tcoes(1)
write(*,'(A21,F11.5)') 'Eccentricity : ',Tcoes(2)
write(*,'(A21,F11.5)') 'Inclination : ',Tcoes(3)*180.d0/pi
write(*,'(A21,F11.5)') 'Arg. of Perigee : ',Tcoes(4)*180.d0/pi
write(*,'(A21,F11.5)') 'R. Ascending Node : ',Tcoes(5)*180.d0/pi
write(*,'(A21,F11.5)') 'Phase : ',Tcoes(6)*180.d0/pi
write(*,*)

C Output Target COEs (deg) to File
write (101,*) 'Target COEs '
write (101,*) '-------------------------------'
write(101,'(A21,F11.5)') 'Semi M. Axis : ',Tcoes(1)
write(101,'(A21,F11.5)') 'Eccentricity : ',Tcoes(2)
write(101,'(A21,F11.5)') 'Inclination : ',Tcoes(3)*180.d0/pi
write(101,'(A21,F11.5)') 'Arg. of Perigee : ',Tcoes(4)*180.d0/pi
write(101,'(A21,F11.5)') 'R. Ascending Node : ',Tcoes(5)*180.d0/pi
write(101,'(A21,F11.5)') 'Phase : ',Tcoes(6)*180.d0/pi
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write(101,*)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c GUIDANCE ALGORITHM
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C First Guess For Performing the Manuever in Single Step

C Calculate Delta COEs Vector

deltas=reshape((/(Tcoes(1)-Icoes(1)),(Tcoes(2)-Icoes(2)),
& (Tcoes(4)-Icoes(4)),(Tcoes(3)-Icoes(3)),
& (Tcoes(5)-Icoes(5))/),(/5,1/))

C If the Manuever is Greater than 180 deg, Go Other Way Around
do i=3,5

if (abs(deltas(i,1))>pi) then
deltas(i,1)=sign((2*pi-abs(deltas(i,1))),-deltas(i,1))

end if
end do

C Evaluate the Guidance Matrix
call eval_matrix(Icoes,intmatr)

C Take The Inverse of the Matrix
call invert(intmatr,tempmatr,5)

C Calculate Tether Current Law Coefficients
currents=1.d0/Ic*matmul(tempmatr,deltas)

k=1
maxI=0
r10=int(Icoes(4)*180.d0/pi)*k ! Argument of Perigee Range
r1f=int(Tcoes(4)*180.d0/pi)*k

if (r10>r1f) then
r1=r10
r10=r1f-5
r1f=r1+5
else
r10=r10-5
r1f=r1f+5

end if

C Brute-Force Search For Maximum Current
do i=r10, r1f

r1=i*pi/180/k
do j=0, 360*k

r2=j*pi/180/k
curI=currents(1,1)+currents(2,1)*dcos(r2)+
& currents(3,1)*dsin(r2)-currents(4,1)*dcos(2.d0*(r2+r1))-
& currents(5,1)*dsin(2.d0*(r2+r1))
if (dabs(curI)>maxI) maxI=dabs(curI)

end do
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end do

C Recalculate Time Of Flight and Current Coefficients
C To Fit the Maximum Current Requirement

pe=2.d0*pi/dsqrt(mu/Icoes(1)**3.d0) ! Orbit Period
tf=maxI*pe

currents=pe/tf/Ic*matmul(tempmatr,deltas)

C Time of Flight

hr=int(tf/3600)
min=int(mod(tf,3600.d0)/60)
sec=tf-hr*3600-min*60
write(*,'(A21,F16.2,A5)') 'Est. Total Time : ', tf, ' secs'
write (*,*) '-------------------------------'
write(*,'(F6.0,A4,F4.0,A5,F5.2,A5)') hr, 'hr ', min, 'min ', sec, ' sec'

write(101,'(A21,F16.2,A5)') 'Est. Total Time : ', tf, ' secs'
write (101,*) '-------------------------------'
write(101,'(F6.0,A4,F4.0,A5,F5.2,A5)') hr, 'hr ', min, 'min ', sec, ' sec'

if (dispmode) then
write (*,*) '.....press return.....'
read(*,*)

end if

call coe2xyz(Icoes, x)

t=0.d0
Ict=0.d0
Thrust=0.d0

C Open Output Files
C Position

open(10,file='../../position.2bp', STATUS='REPLACE')
C Velocity

open(20,file='../../velocity.2bp', STATUS='REPLACE')
C Time

open(30,file='../../time.2bp', STATUS='REPLACE')
C Current History

open(40,file='../../curhist.2bp', STATUS='REPLACE')
C Thrust History

open(50,file='../../Thist.2bp', STATUS='REPLACE')

C Write Outputs to Files
write(10,*) x(1),x(2),x(3)
write(20,*) x(4),x(5),x(6)
write(30,*) t
write(40,*) Ict
write(50,*) Thrust

ido=1
param(4)=10000000.d0 ! Maximum Number of Iterations for

! Numerical Integrator
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c START INTEGRATION LOOP AND DO THE STEPPING
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

do step=1, num_steps

write(999,'(\,A1)') char(13)

call xyz2coe(x, Intcoes)

C Ouput Current COEs to Screen
write (*,*) 'Current COEs '
write (*,*) '-------------------------------'
write(*,'(A21,F11.5)') 'Semi M. Axis : ',Intcoes(1)
write(*,'(A21,F11.5)') 'Eccentricity : ',Intcoes(2)
write(*,'(A21,F11.5)') 'Inclination : ',Intcoes(3)*180.d0/pi
write(*,'(A21,F11.5)') 'Arg. of Perigee : ',Intcoes(4)*180.d0/pi
write(*,'(A21,F11.5)') 'R. Ascending Node : ',Intcoes(5)*180.d0/pi
write(*,'(A21,F11.5)') 'Phase : ',Intcoes(6)*180.d0/pi
write(*,*)

C Ouput Current COEs to File
write (101,*) 'Current COEs '
write (101,*) '-------------------------------'
write(101,'(A21,F11.5)') 'Semi M. Axis : ',Intcoes(1)
write(101,'(A21,F11.5)') 'Eccentricity : ',Intcoes(2)
write(101,'(A21,F11.5)') 'Inclination : ',Intcoes(3)*180.d0/pi
write(101,'(A21,F11.5)') 'Arg. of Perigee : ',Intcoes(4)*180.d0/pi
write(101,'(A21,F11.5)') 'R. Ascending Node : ',Intcoes(5)*180.d0/pi
write(101,'(A21,F11.5)') 'Phase : ',Intcoes(6)*180.d0/pi
write(101,*)

pe=2.d0*pi/dsqrt(mu/Intcoes(1)**3.d0)

C Calculate Remaining Delta COEs for the Rest of the Manuever
Intdeltas=reshape((/(Tcoes(1)-Intcoes(1)),(Tcoes(2)-Intcoes(2)),

& (Tcoes(4)-Intcoes(4)),(Tcoes(3)-Intcoes(3)),
& (Tcoes(5)-Intcoes(5))/),(/5,1/))

C If the Manuever is Greater than 180 deg, Go Other Way Around
do i=3,5

if (abs(Intdeltas(i,1))>pi) then
Intdeltas(i,1)=sign((2*pi-abs(Intdeltas(i,1))),-Intdeltas(i,1))

end if
end do

C Evaluate the Guidance Matrix
call eval_matrix(Intcoes,intmatr)

C Take The Inverse of the Matrix
call invert(intmatr,tempmatr,5)

C Calculate Tether Current Law Coefficients
currents=pe/(tf-t)/Ic*matmul(tempmatr,Intdeltas)

k=1

B-6 



maxI=0
r10=int(Icoes(4)*180.d0/pi)*k ! Arg. of Perigee Range
r1f=int(Tcoes(4)*180.d0/pi)*k

if (r10>r1f) then
r1=r10
r10=r1f-5
r1f=r1+5
else
r10=r10-5
r1f=r1f+5

end if

C Brute-Force Search For Maximum Current
do i=r10, r1f

r1=i*pi/180/k
do j=0, 360*k

r2=j*pi/180/k
curI=currents(1,1)+currents(2,1)*dcos(r2)+
& currents(3,1)*dsin(r2)-currents(4,1)*dcos(2.d0*(r2+r1))-
& currents(5,1)*dsin(2.d0*(r2+r1))
if (dabs(curI)>maxI) maxI=dabs(curI)

end do
end do

C Recalculate Time Of Flight and Current Coefficients
C To Fit the Maximum Current Requirement

tleft=maxI*(tf-t)
tf=t+tleft
currents=pe/(tf-t)/Ic*matmul(tempmatr,Intdeltas)

C Write Step Current Law Coefficients to File
write(102,'(A7,I3,A8,F16.2,A14,F16.2)') ' step : ',step,' time : ',
& t, ' step time : ', ts
write(102,*)

'_________________________________________________________________'
write(102,*)
write(102,'(A19,F8.5,A3,F8.5)') ' DC : ',currents(1,1),
& ' ; ',currents(1,1)*Ic
write(102,'(A19,F8.5,A3,F8.5)') ' Cos(nu) : ',currents(2,1),
& ' ; ',currents(2,1)*Ic
write(102,'(A19,F8.5,A3,F8.5)') ' Sin(nu) : ',currents(3,1),
& ' ; ',currents(3,1)*Ic
write(102,'(A19,F8.5,A3,F8.5)') '-Cos[2(nu+w)] : ',currents(4,1),
& ' ; ',currents(4,1)*Ic
write(102,'(A19,F8.5,A3,F8.5)') '-Sin[2(nu+w)] : ',currents(5,1),
& ' ; ',currents(5,1)*Ic
write(102,*)

if (dispmode) then
write (*,*) '.....press return.....'
read(*,*)

end if

C Calculate Step Time
ts=(tf-t)/(num_steps-step+1)

C Output Step Time
write(*,'(A7,I3,A8,F16.2,A14,F16.2)') ' step : ',step,' time : ', t, ' step

time : ', ts
write(101,'(A7,I3,A8,F16.2,A14,F16.2)') ' step : ',step,' time : ', t, '

step time : ', ts
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c START INTEGRATION LOOP
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

write(999,'(I3,A1,\)') 0 ,'%' ! Process Percentage Display

Int_st=t ! Integration Start Time
Int_et=t+ts ! Integration Stop Time

do 100 tend=Int_st+100.d0,Int_et,100.d0
call divprk (ido,neq,fcn,t,tend,tol,param,x)

C Write Outputs to Files
write(10,*) x(1),x(2),x(3)
write(20,*) x(4),x(5),x(6)
write(30,*) t
write(40,*) Ict
write(50,*) Thrust

C Calculate Process Percentage and Display
stepper=int(100*(t-Int_st)/ts)
if (stepper<>stepperold) then

write(999,'(\,A1)') char(13)
write(999,'(I3,A1,\)') stepper ,'%'
stepperold=stepper

end if

100 continue

if (t<Int_et) then

call divprk (ido,neq,fcn,t,Int_et,tol,param,x)

write(10,*) x(1),x(2),x(3)
write(20,*) x(4),x(5),x(6)
write(30,*) t
write(40,*) Ict
write(50,*) Thrust

end if

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c END INTEGRATION LOOP
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

end do

close(10)
close(20)
close(30)
close(40)
close(50)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Output Final Results

call xyz2coe(x, Intcoes)
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write(999,'(\,A1)') char(13)

C Final COEs
write (*,*) 'Final COEs '
write (*,*) '-------------------------------'
write(*,'(A21,F11.5)') 'Semi M. Axis : ',Intcoes(1)
write(*,'(A21,F11.5)') 'Eccentricity : ',Intcoes(2)
write(*,'(A21,F11.5)') 'Inclination : ',Intcoes(3)*180.d0/pi
write(*,'(A21,F11.5)') 'Arg. of Perigee : ',Intcoes(4)*180.d0/pi
write(*,'(A21,F11.5)') 'R. Ascending Node : ',Intcoes(5)*180.d0/pi
write(*,'(A21,F11.5)') 'Phase : ',Intcoes(6)*180.d0/pi
write(*,'(A14,F11.2)') 'Final Time : ', t
write (*,*)

write (101,*) 'Final COEs '
write (101,*) '-------------------------------'
write(101,'(A21,F11.5)') 'Semi M. Axis : ',Intcoes(1)
write(101,'(A21,F11.5)') 'Eccentricity : ',Intcoes(2)
write(101,'(A21,F11.5)') 'Inclination : ',Intcoes(3)*180.d0/pi
write(101,'(A21,F11.5)') 'Arg. of Perigee : ',Intcoes(4)*180.d0/pi
write(101,'(A21,F11.5)') 'R. Ascending Node : ',Intcoes(5)*180.d0/pi
write(101,'(A21,F11.5)') 'Phase : ',Intcoes(6)*180.d0/pi
write(101,'(A14,F11.2)') 'Final Time : ', t
write (101,*)

C Errors in the Final Orbit
write (*,*) 'Error '
write (*,*) '-------------------------------'
write(*,'(A21,F11.5)') 'Semi M. Axis : ',Intcoes(1)-Tcoes(1)
write(*,'(A21,F11.5)') 'Eccentricity : ',Intcoes(2)-Tcoes(2)
write(*,'(A21,F11.5)') 'Inclination : ',(Intcoes(3)-
& Tcoes(3))*180.d0/pi
write(*,'(A21,F11.5)') 'Arg. of Perigee : ',(Intcoes(4)-
& Tcoes(4))*180.d0/pi
write(*,'(A21,F11.5)') 'R. Ascending Node : ',(Intcoes(5)-
& Tcoes(5))*180.d0/pi
write(*,'(A21,F11.5)') 'Phase : ',(Intcoes(6)-
& Tcoes(6))*180.d0/pi

write (101,*) 'Error '
write (101,*) '-------------------------------'
write(101,'(A21,F11.5)') 'Semi M. Axis : ',Intcoes(1)-Tcoes(1)
write(101,'(A21,F11.5)') 'Eccentricity : ',Intcoes(2)-Tcoes(2)
write(101,'(A21,F11.5)') 'Inclination : ',(Intcoes(3)-
& Tcoes(3))*180.d0/pi
write(101,'(A21,F11.5)') 'Arg. of Perigee : ',(Intcoes(4)-
& Tcoes(4))*180.d0/pi
write(101,'(A21,F11.5)') 'R. Ascending Node : ',(Intcoes(5)-
& Tcoes(5))*180.d0/pi
write(101,'(A21,F11.5)') 'Phase : ',(Intcoes(6)-
& Tcoes(6))*180.d0/pi

write (*,*) '.....press return to exit.....'
read(*,*)

C Date/Time Stamp
call date_and_time(VALUES = datetime)
write(101,'(A9,I2,A1,I2,A1,I4,A3,I2,A1,I2,A1,I2,A9)') '------- ',
& datetime(2),'/', datetime(3),'/', datetime(1), ' * ',
& datetime(5),':', datetime(6),':', datetime(7),'------- '
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C Maximum Current Reached During the Manuever
write(102,'(A19,F8.5,A3,F8.5)') 'Maximum Current : ', Imax/dabs(Ic),
& ' ; ',Imax
write(102,*)
write(102,'(A9,I2,A1,I2,A1,I4,A3,I2,A1,I2,A1,I2,A9)') '------- ',
& datetime(2),'/', datetime(3),'/', datetime(1),
& ' * ',datetime(5),':', datetime(6),':', datetime(7),'------- '

close(101)
close(102)

stop
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C EQUATIONS OF MOTION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine fcn(neq,t,x,xd)

implicit none

integer neq
double precision t, x(neq), xd(neq), r, em(3)
double precision ap(3), temp

double precision Hvec(3), rv(3), vv(3), tvec(3), evec(3), nvec(3)
double precision v, a, e, i, w, Om, nu

double precision mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents(5,1)
common mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents

double precision norm, dot, as
double precision I1, I2, I3, I4, I5

em=[0.d0, 0.d0, 1.d0] ! Earth's Magnetic Dipole Axis

C Convert Position and Velocity Classical Orbital Elements

rv=[x(1), x(2), x(3)] ! Position Vector
vv=[x(4), x(5), x(6)] ! Velocity Vector
r=norm(rv)
v=norm(vv)

a=-mu/2.d0/(v**2.d0/2.d0-mu/r) ! Semi-major Axis

call cross(rv, vv, Hvec)
call cross(vv, Hvec, tvec)

evec=(tvec/mu-rv/r) ! Eccentricity Vector

e=norm(evec) ! Eccentircity

i=dacos(Hvec(3)/norm(Hvec)) ! Inclination

C If Inclined Orbit, Calculate Line of Nodes
if (dabs(i)>1.d-13) then
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nvec=[-Hvec(2), Hvec(1), 0.d0]/norm([-Hvec(2), Hvec(1), 0.d0])
end if

C No Eccentricity and Inclination Case
if (dabs(e)<1.d-13 .AND. (dabs(i)<1.d-13)) then

w=0.d0 ! Argument of Perigee
Om=0.d0 ! Argument of Line of Nodes
nu=datan2(rv(2),rv(1)) ! True Anomaly

C No Eccentricity Case
else if (dabs(e)<1.d-13) then

Om=datan2(nvec(2),nvec(1))
w=0.d0
nu=dacos(dot(nvec,rv)/r)
if (rv(3)<0.d0) nu=-nu ! Quadrant Check

C No Inclination Case
else if (dabs(i)<1.d-13) then

Om=0.d0
w=datan2(evec(2),evec(1))
nu=real(dacos(dot(evec,rv)/e/r))
if (dot(rv,vv)<0.d0) nu=-nu

C Inclination and Eccentricity NON-Zero
else

Om=datan2(nvec(2),nvec(1))
w=dacos(dot(nvec,evec)/e)
if (evec(3)<0.d0) w=-w
as=dot(evec,rv)
as=as/e/r

! The 'as' value must be smaller than zero (Fortran Error)
if (as>1.d0) then

as=1.d0
end if

nu=dacos(as)
if (dot(rv,vv)<0) nu=-nu

end if

I1=currents(1,1) ! Current Law Coefficients
I2=currents(2,1)
I3=currents(3,1)
I4=currents(4,1)
I5=currents(5,1)

C Current Law Super Position
Ict=Ic*(I1+I2*dcos(nu)+I3*dsin(nu)-I4*dcos(2.d0*(nu+w)))
Ict=Ict+Ic*(-I5*dsin(2.d0*(nu+w)))

C Update Maximum Current Level Reached
If (dabs(Ict)>Imax) Imax=dabs(Ict)

C Perturbing Tether Acceleration
temp=(Ict*L/m)*(mum/r**3.d0)*(1.d0/r)
ap=[temp*rv(2), -temp*rv(1), 0.d0]

C Thrust History
Thrust=dsqrt(ap(1)**2.d0+ap(2)**2.d0+ap(3)**2.d0)*m
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C Two Body Problem Equations of Motion
xd(1)=x(4)
xd(2)=x(5)
xd(3)=x(6)
xd(4)=-mu*x(1)/r**3.d0+ap(1)
xd(5)=-mu*x(2)/r**3.d0+ap(2)
xd(6)=-mu*x(3)/r**3.d0+ap(3)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Routine to Invert a Matrix by Gaussian Elimination
c
c Ainv=inverse(A) A(n,n) Ainv(n,n)
c Note: sizes maxed at 64 x 64 - re dimension for larger matrices
c D matrix is extended.
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine invert( A, Ainv, n )

implicit none

double precision A(5,5),Ainv(5,5)
double precision D(5,10)

integer i, j, k, n, n2
double precision beta, alpha

C Initialize the Reduction Matrix
n2 = 2*n
do 1 i = 1,n

do 2 j = 1,n
D(i,j) = A(i,j)
d(i,n+j) = 0.

2 continue
D(i,n+i) = 1.

1 continue

C Do the Reduction
do 3 i = 1,n

alpha = D(i,i)
if(alpha .eq. 0.) go to 300
do 4 j = 1,n2

D(i,j) = D(i,j)/alpha
4 continue

do 5 k = 1,n
if((k-i).eq.0) go to 5
beta = D(k,i)
do 6 j = 1,n2

D(k,j) = D(k,j) - beta*D(i,j)
6 continue
5 continue
3 continue

C Copy Result into Output Matrix
do 7 i = 1,n

do 8 j = 1,n
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Ainv(i,j) = D(i,j+n)
8 continue
7 continue

return

300 print *,'*** ERROR: Singular matrix ***'
return
end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Guidance Matrix
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine eval_matrix(coes,i_matr)

implicit none

double precision coes(5), i_matr(5,5)
double precision a, e, w, i0, o, n, pe, C
double precision mat_line1(5)

double precision mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents(5,1)
common mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents

a =coes(1)
e =coes(2)
i0=coes(3)
w =coes(4)
o =coes(5)

n=dsqrt(mu/a**3.d0)
pe=2.d0*pi/n

C=L*mum/(m*n*a**3.d0*(1.d0-e**2.d0)**(5.d0/2.d0))

i_matr(1,1) = 1.d0/2.d0*C*dcos(i0)*pi*(8.d0+3.d0*e**4.d0
& +24.d0*e**2.d0)/n/(-1.d0+e)/(e+1.d0)
i_matr(1,2) = 2.d0*C*dcos(i0)*e*pi*(3.d0*e**2.d0+4.d0)/
& n/(-1.d0+e)/(e+1.d0)
i_matr(1,3) = 0.d0
i_matr(1,4) = -1.d0/2.d0*C*e**2.d0*pi*(6.d0+e**2.d0)*
& (dcos(i0-2.d0*w)+dcos(i0+2.d0*w))/n/(-1.d0+e)/(e+1.d0)
i_matr(1,5) = -2.d0*C*dcos(i0)*e**2.d0*pi*dsin(w)*dcos(w)*
& (6.d0+e**2.d0)/n/(-1.d0+e)/(e+1.d0)
i_matr(2,1) = -7.d0/4.d0*C*dcos(i0)*e*pi*(e**2.d0+4.d0)/a/n
i_matr(2,2) = -C*dcos(i0)*pi*(2.d0+5.d0*e**2.d0)/a/n
i_matr(2,3) = 0.d0
i_matr(2,4) = 1.d0/4.d0*C*e*pi*(5.d0+2.d0*e**2.d0)*
& (dcos(i0-2.d0*w)+dcos(i0+2.d0*w))/n/a
i_matr(2,5) = C*dcos(i0)*e*pi*dsin(w)*dcos(w)*(5.d0+2.d0*e**2.d0)/n/a
i_matr(3,1) = -1.d0/2.d0/n*C*dcos(i0)/a*e**2.d0*pi*dsin(w)*dcos(w)
i_matr(3,2) = -1.d0/n*C*dcos(i0)/a*e*pi*dsin(w)*dcos(w)
i_matr(3,3) = -1.d0/2.d0*C*dcos(i0)*pi*(4.d0+e**2.d0+
& 2.d0*e**2.d0*dcos(w)**2.d0)/n/a/e
i_matr(3,4) = -1.d0/2.d0*C*dcos(i0)*pi*dsin(w)*
& dcos(w)*(10.d0+e**2.d0)/n/a
i_matr(3,5) = 1.d0/2.d0*C*dcos(i0)*pi*
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& (-4.d0+10.d0*dcos(w)**2.d0+e**2.d0*dcos(w)**2.d0)/n/a
i_matr(4,1) = 1.d0/4.d0*C*dsin(i0)*pi*(4.d0+e**2.d0+
& 2.d0*e**2.d0*dcos(w)**2.d0)/n/a
i_matr(4,2) = 1.d0/2.d0*C*dsin(i0)*e*pi*(1.d0+2.d0*dcos(w)**2.d0)/n/a
i_matr(4,3) = -1.d0/n*C*dsin(i0)/a*e*pi*dsin(w)*dcos(w)
i_matr(4,4) = -1.d0/2.d0*C*dsin(i0)*pi*(1.d0+e**2.d0*dcos(w)**2.d0)/n/a
i_matr(4,5) = -1.d0/2.d0/n*C*dsin(i0)/a*e**2.d0*pi*dsin(w)*dcos(w)
i_matr(5,1) = 1.d0/4.d0*C*dsin(2.d0*w)*pi*e**2.d0/n/a
i_matr(5,2) = 1.d0/2.d0*C*dsin(2.d0*w)*pi*e/n/a
i_matr(5,3) = 1.d0/2.d0*C*dcos(2.d0*w)*pi*e/n/a
i_matr(5,4) = 0.d0
i_matr(5,5) = -1.d0/4.d0*C*pi*(2.d0+e**2.d0)/n/a

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Simplified Guidance Matrix
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine eval_matrix_simple(coes,i_matr)

implicit none

double precision coes(5), i_matr(5,5)
double precision a, e, w, i0, o, n, pe, C
double precision mat_line1(5)

double precision mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents(5,1)
common mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents

a =coes(1)
e =coes(2)
i0=coes(3)
w =coes(4)
o =coes(5)

n=dsqrt(mu/a**3.d0)
pe=2.d0*pi/n

C=L*mum/(m*n*a**3.d0*(1.d0-e**2.d0)**(5.d0/2.d0))

i_matr(1,1) = 4.d0*C*dcos(i0)*pi/n/(-1.d0+e)/(e+1.d0)
i_matr(1,2) = 8.d0*C*dcos(i0)*e*pi/n/(-1.d0+e)/(e+1.d0)
i_matr(1,3) = 0.d0
i_matr(1,4) = 0.d0
i_matr(1,5) = 0.d0
i_matr(2,1) = -7.d0*C*dcos(i0)*e*pi/a/n
i_matr(2,2) = -C*dcos(i0)*pi*(2.d0)/a/n
i_matr(2,3) = 0.d0
i_matr(2,4) = 5.d0/4.d0*C*e*pi*(dcos(i0-2.d0*w)+dcos(i0+2.d0*w))/n/a
i_matr(2,5) = 5.d0*C*dcos(i0)*e*pi*dsin(w)*dcos(w)/n/a
i_matr(3,1) = 0.d0
i_matr(3,2) = -1.d0/n*C*dcos(i0)/a*e*pi*dsin(w)*dcos(w)
i_matr(3,3) = -2.d0*C*dcos(i0)*pi/n/a/e
i_matr(3,4) = -5.d0*C*dcos(i0)*pi*dsin(w)*dcos(w)/n/a
i_matr(3,5) = C*dcos(i0)*pi*(-2.d0+5.d0*dcos(w)**2.d0)/n/a
i_matr(4,1) = C*dsin(i0)*pi/n/a
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i_matr(4,2) = 1.d0/2.d0*C*dsin(i0)*e*pi*(1.d0+2.d0*dcos(w)**2.d0)/n/a
i_matr(4,3) = -1.d0/n*C*dsin(i0)/a*e*pi*dsin(w)*dcos(w)
i_matr(4,4) = -1.d0/2.d0*C*dsin(i0)*pi/n/a
i_matr(4,5) = 0.d0
i_matr(5,1) = 0.d0
i_matr(5,2) = 1.d0/2.d0*C*dsin(2.d0*w)*pi*e/n/a
i_matr(5,3) = 1.d0/2.d0*C*dcos(2.d0*w)*pi*e/n/a
i_matr(5,4) = 0.d0
i_matr(5,5) = -1.d0/2.d0*C*pi/n/a

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Clasical Orbital Elements to Position and Velocity
c a,e,i,w,raan to r,v (xyz)
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine coe2xyz(coes,rv)

implicit none

double precision coes(5), rv(6)

double precision mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents(5,1)
common mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents

double precision a, e, w, i, o, r, v
double precision r0(3), v0(3)

a =coes(1)
e =coes(2)
i =coes(3)
w =coes(4)
o =coes(5)

C Position
r=a*(1.d0-e)

C Velocity
v=dsqrt(2.d0*mu*(1.d0/r-1.d0/2.d0/a))

C Rotation Matrix Multiplication
r0=r*(/(dcos(w)*dcos(o)-dsin(w)*dcos(i)*dsin(o)),
& (dcos(w)*dsin(o)+dsin(w)*dcos(i)*dcos(o)),(dsin(w)*dsin(i))/)
v0=v*(/(-dsin(w)*dcos(o)-dcos(w)*dcos(i)*dsin(o)),
& (-dsin(w)*dsin(o)+dcos(w)*dcos(i)*dcos(o)),(dcos(w)*dsin(i))/)

rv(1)=r0(1)
rv(2)=r0(2)
rv(3)=r0(3)
rv(4)=v0(1)
rv(5)=v0(2)
rv(6)=v0(3)

return

end
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Position and Velocity to Classical Orbital Elements
c r,v (xyz) to a,e,i,w,raan
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine xyz2coe(rvx,coes)

implicit none

double precision rvx(6), coes(5)

double precision mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents(5,1)
common mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents

double precision a, e, w, i, Om, r, v, nu, as
double precision rv(3), vv(3), Hvec(3), tvec(3), evec(3), nvec(3)
double precision norm, dot

rv=[rvx(1), rvx(2), rvx(3)]
vv=[rvx(4), rvx(5), rvx(6)]
r=norm(rv)
v=norm(vv)

a=-mu/2.d0/(v**2.d0/2.d0-mu/r)

call cross(rv, vv, Hvec)
call cross(vv, Hvec, tvec)
evec=(tvec/mu-rv/r)
e=norm(evec)
i=dacos(Hvec(3)/norm(Hvec))
if (dabs(i)>1.d-13) then

nvec=[-Hvec(2), Hvec(1), 0.d0]/norm([-Hvec(2), Hvec(1), 0.d0])
end if
if (dabs(e)<1.d-13 .AND. (dabs(i)<1.d-13)) then

w=0.d0
Om=0.d0
nu=datan2(rv(2),rv(1))

else if (dabs(e)<1.d-13) then
Om=datan2(nvec(2),nvec(1))
w=0.d0
nu=dacos(dot(nvec,rv)/r)
if (rv(3)<0.d0) nu=-nu

else if (dabs(i)<1.d-13) then
Om=0.d0
w=datan2(evec(2),evec(1))
nu=real(dacos(dot(evec,rv)/e/r))
if (dot(rv,vv)<0.d0) nu=-nu

else
Om=datan2(nvec(2),nvec(1))
w=dacos(dot(nvec,evec)/e)
if (evec(3)<0.d0) w=-w
as=dot(evec,rv)
as=as/e/r
if (as>1.d0) then

as=1.d0
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end if
nu=dacos(as)
if (dot(rv,vv)<0) nu=-nu

end if
rv=[x(1), x(2), x(3)] ! Position Vector
vv=[x(4), x(5), x(6)] ! Velocity Vector
r=norm(rv)
v=norm(vv)

a=-mu/2.d0/(v**2.d0/2.d0-mu/r) ! Semi-major Axis

call cross(rv, vv, Hvec)
call cross(vv, Hvec, tvec)

evec=(tvec/mu-rv/r) ! Eccentricity Vector

e=norm(evec) ! Eccentircity

i=dacos(Hvec(3)/norm(Hvec)) ! Inclination

C If Inclined Orbit, Calculate Line of Nodes
if (dabs(i)>1.d-13) then

nvec=[-Hvec(2), Hvec(1), 0.d0]/norm([-Hvec(2), Hvec(1), 0.d0])
end if

C No Eccentricity and Inclination Case
if (dabs(e)<1.d-13 .AND. (dabs(i)<1.d-13)) then

w=0.d0 ! Argument of Perigee
Om=0.d0 ! Argument of Line of Nodes
nu=datan2(rv(2),rv(1)) ! True Anomaly

C No Eccentricity Case
else if (dabs(e)<1.d-13) then

Om=datan2(nvec(2),nvec(1))
w=0.d0
nu=dacos(dot(nvec,rv)/r)
if (rv(3)<0.d0) nu=-nu ! Quadrant Check

C No Inclination Case
else if (dabs(i)<1.d-13) then

Om=0.d0
w=datan2(evec(2),evec(1))
nu=real(dacos(dot(evec,rv)/e/r))
if (dot(rv,vv)<0.d0) nu=-nu

C Inclination and Eccentricity NON-Zero
else

Om=datan2(nvec(2),nvec(1))
w=dacos(dot(nvec,evec)/e)
if (evec(3)<0.d0) w=-w
as=dot(evec,rv)
as=as/e/r

! The 'as' value must be smaller than zero (Fortran Error)
if (as>1.d0) then

as=1.d0
end if

nu=dacos(as)
if (dot(rv,vv)<0) nu=-nu
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end if

coes(1) = a
coes(2) = e
coes(3) = i
coes(4) = w
coes(5) = Om

C Avoid Negative Angles
do i=3,5

if (coes(i)<0) then
coes(i)=2*pi+coes(i)

end if
end do

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Cross Product
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine cross(v1, v2, v3)

implicit none

double precision v1(3), v2(3), v3(3)

v3(1) = v1(2) * v2(3) - v1(3) * v2(2)
v3(2) = v1(3) * v2(1) - v1(1) * v2(3)
v3(3) = v1(1) * v2(2) - v1(2) * v2(1)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Dot Product
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function dot(v1, v2)
implicit none

double precision v1(3), v2(3)

dot=v1(1)*v2(1)+v1(2)*v2(2)+v1(3)*v2(3)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Magnitude
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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double precision function norm(v3)
implicit none

double precision v3(3)

norm=dsqrt(v3(1)**2.d0+v3(2)**2.d0+v3(3)**2.d0)

return

end

 

B-19 



Appendix C. Nonlinear Solution For Tether Current Law Coefficients 
 
 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C NonLinearSolution.f90
C
C NONLINEAR SOLUTION FOR TETHER CURRENT LAW COEFFICIENTS
C
C Lt Hakan San - AFIT/ENY/GA-02M
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

implicit none

integer itMax, NLF, i
parameter (NLF=6)

double precision errRel
double precision fNorm, XNL(6), XNLGuess(6)

double precision tf, hr, min, sec
double precision tempc(5), tempx(6)

double precision mu, mum, m, L, Ic, simTol, targetCOEs(5), inrv(6),
& currents(5), maxI
common mu, mum, m, L, Ic, simTol, targetCOEs, inrv, currents,
& maxI,tf

external dneqnf, divprk, fcn, norm, dot, NLFCN

pi = 3.14159265358979323846264338327950288419716939937510d0

simTol=1.d-10 ! Numerical Integration Tolerance

C Parameters
mu=3.986d5 ! Earth's Gravitaional Constant
mum=8.0711d6 ! Earth's Magnetic Dipole Moment
Ic=-5.d0 ! Applied Tether Current
L=15.d0 ! Tether Length
m=1000.d0 ! System Mass

C Read Initial Position and Velocity From File (Cartesian Coordinates)
write (*,*) 'initial position and velocity'
i=1
open (1, file = 'initial.2bp')
do while (.NOT. (eof(1) .OR. (i==7)))

read (1,*) inrv(i)
write (*,*) inrv(i)
i=i+1

end do
close(1)

C Convert Initial r & v to COEs and Output
write(*,*) 'initial coes'
call xyz2coe(inrv,tempc)
write (*,*) tempc(1)
write (*,*) tempc(2)
write (*,*) tempc(3)
write (*,*) tempc(4)
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write (*,*) tempc(5)

C Read Current Coefficients Generated by Guidance Algorithm as Initial Guess
write (*,*) 'currents'
i=1
open (2, file = 'currents.2bp')
do while (.NOT. (eof(2) .OR. (i==6)))

read (2,*) currents(i)
write (*,*) currents(i)
i=i+1

end do

C Read Time of Flight Guess
write (*,*) 'total time'
read (2,*) tf
hr=int(tf/3600)
min=int(mod(tf,3600.d0)/60)
sec=tf-hr*3600-min*60
write (*,*) tf
write (*,*) hr, 'hr', min, 'min', sec, 'sec'
close(2)

C Read Target COEs
write (*,*) 'target coe'
i=1
open (3, file = 'target.coe')
do while (.NOT. (eof(3) .OR. (i==6)))

read (3,*) targetCOEs(i)
write (*,*) targetCOEs(i)
i=i+1

end do
close(3)

C Set Initial Guess Vector
C XGUESS=( I1 I2 I3 I4 I5 tf )

XNLGuess(1)=currents(1)
XNLGuess(2)=currents(2)
XNLGuess(3)=currents(3)
XNLGuess(4)=currents(4)
XNLGuess(5)=currents(5)
XNLGuess(6)=Ic

errRel = 1.0d-6 ! Relative Error for Nonlinear Equation Solver
itMax = 20000 ! Maximum Number of Iterations for NL Eq. Sol.

C Call the Solver
call DNEQNF (NLFCN, errRel, NLF, itMax, XNLGuess, XNL, FNORM)

C Output the Results of Nonlinear Solution (Current Coefficients)
write (*,*), 'Currents'
write (*,*),XNL(1)
write (*,*),XNL(2)
write (*,*),XNL(3)
write (*,*),XNL(4)
write (*,*),XNL(5)
write (*,*),'time: ', XNL(6)

C Norm of the Solution
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write (*,*),'fnorm', FNORM

C Output to File
open(10,file='nl-currents.2bp', STATUS='REPLACE')

write (10,*) XNL(1)
write (10,*) XNL(2)
write (10,*) XNL(3)
write (10,*) XNL(4)
write (10,*) XNL(5)
write (10,*) XNL(6)

close(10)

read(*,*)

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c NONLINEAR EQUATION SOLVER
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE NLFCN (XNL, F, NLF)
integer NLF
double precision XNL(NLF), F(NLF)

integer mxparm, neq
parameter (mxparm=50, neq=6)

double precision x(neq),param(mxparm),t,tend
double precision tf, hr, min, sec
double precision rv(3), vv(3), Hvec(3), r, v, a, e, i, w, Om, evec(3),
& nvec(3), Itot,as
double precision tvec(3), intCoes(5)

double precision mu, mum, m, L, Ic, simTol, targetCOEs(5), inrv(6),
& currents(5), maxI
common mu, mum, m, L, Ic, simTol, targetCOEs, inrv, currents,
& maxI, tf
external divprk, fcn

t=0.d0

param(4)=10000000.d0 ! Maximum Number of Iterations
! for Numerical Integrator

x(1)=inrv(1)
x(2)=inrv(2)
x(3)=inrv(3)
x(4)=inrv(4)
x(5)=inrv(5)
x(6)=inrv(6)

currents(1)=XNL(1) ! Variables for NL Eq.
currents(2)=XNL(2)
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currents(3)=XNL(3)
currents(4)=XNL(4)
currents(5)=XNL(5)
Ic=XNL(6)
maxI=0

C Run the Numerical Integrator
ido=1
call divprk (ido,neq,fcn,t,tf,simTol,param,x)
ido=3
call divprk (ido,neq,fcn,tf,tf,simTol,param,x)

call xyz2coe(x,intCoes)

C Nonlinear Equations
F(1) = targetCOEs(1) - IntCoes(1)
F(2) = targetCOEs(2) - IntCoes(2)
F(3) = targetCOEs(3) - IntCoes(3)
F(4) = targetCOEs(4) - IntCoes(4)
F(5) = targetCOEs(5) - IntCoes(5)
F(6) = maxI-1

C Output Current Errors in the Final Orbit
write(*,*)'--------------------'
write(*,*)'a',F(1)
write(*,*)'e',F(2)
write(*,*)'w',F(3)
write(*,*)'i',F(4)
write(*,*)'o',F(5)
write(*,*)'I',XNL(6)
write(*,*)'t',tf

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C EQUATIONS OF MOTION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine fcn(neq,t,x,xd)

integer neq
double precision t, x(neq), xd(neq), r, em(3), Ict
double precision ap(3), temp

double precision Hvec(3), rv(3), vv(3), tvec(3), evec(3), nvec(3)
double precision v, a, e, i, w, Om, nu

double precision mu, mum, m, L, Ic, simTol, targetCOEs(5), inrv(6),
& currents(5), maxI
common mu, mum, m,L, Ic, simTol, targetCOEs, inrv, currents, maxI
double precision n, as

double precision norm, dot
double precision I1, I2, I3, I4, I5

em=[0.d0, 0.d0, 1.d0] ! Earth's Magnetic Dipole Axis

C Convert Position and Velocity Classical Orbital Elements

C-4 



rv=[x(1), x(2), x(3)] ! Position Vector
vv=[x(4), x(5), x(6)] ! Velocity Vector
r=norm(rv)
v=norm(vv)

a=-mu/2.d0/(v**2.d0/2.d0-mu/r) ! Semi-major Axis

call cross(rv, vv, Hvec)
call cross(vv, Hvec, tvec)

evec=(tvec/mu-rv/r) ! Eccentricity Vector

e=norm(evec) ! Eccentircity

i=dacos(Hvec(3)/norm(Hvec)) ! Inclination

C If Inclined Orbit, Calculate Line of Nodes
if (dabs(i)>1.d-13) then

nvec=[-Hvec(2), Hvec(1), 0.d0]/norm([-Hvec(2), Hvec(1), 0.d0])
end if

C No Eccentricity and Inclination Case
if (dabs(e)<1.d-13 .AND. (dabs(i)<1.d-13)) then

w=0.d0 ! Argument of Perigee
Om=0.d0 ! Argument of Line of Nodes
nu=datan2(rv(2),rv(1)) ! True Anomaly

C No Eccentricity Case
else if (dabs(e)<1.d-13) then

Om=datan2(nvec(2),nvec(1))
w=0.d0
nu=dacos(dot(nvec,rv)/r)
if (rv(3)<0.d0) nu=-nu ! Quadrant Check

C No Inclination Case
else if (dabs(i)<1.d-13) then

Om=0.d0
w=datan2(evec(2),evec(1))
nu=real(dacos(dot(evec,rv)/e/r))
if (dot(rv,vv)<0.d0) nu=-nu

C Inclination and Eccentricity NON-Zero
else

Om=datan2(nvec(2),nvec(1))
w=dacos(dot(nvec,evec)/e)
if (evec(3)<0.d0) w=-w
as=dot(evec,rv)
as=as/e/r

! The 'as' value must be smaller than zero (Fortran Error)
if (as>1.d0) then

as=1.d0
end if

nu=dacos(as)
if (dot(rv,vv)<0) nu=-nu

end if

I1=currents(1) ! Current Law Coefficients
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I2=currents(2)
I3=currents(3)
I4=currents(4)
I5=currents(5)

C Current Law Super Position

Ict=Ic*(I1+I2*dcos(nu)+I3*dsin(nu)-I4*dcos(2.d0*(nu+w))-
& I5*dsin(2.d0*(nu+w)))

C Maximum Current Level Reached
if(dabs(Ict/Ic)>maxI) then

maxI=dabs(Ict/Ic)
end if

C Perturbing Tether Acceleration
temp=(Ict*L/m)*(mum/r**3.d0)*(1.d0/r)
ap=[temp*rv(2), -temp*rv(1), 0.d0]

C Two Body Problem Equations of Motion
xd(1)=x(4)
xd(2)=x(5)
xd(3)=x(6)
xd(4)=-mu*x(1)/r**3.d0+ap(1)
xd(5)=-mu*x(2)/r**3.d0+ap(2)
xd(6)=-mu*x(3)/r**3.d0+ap(3)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Position and Velocity to Classical Orbital Elements
c r,v (xyz) to a,e,i,w,raan
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine xyz2coe(rvx,coes)

implicit none

double precision rvx(6), coes(5)

double precision mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents(5,1)
common mu, mum, m, L, Ic, pi, Ict, Thrust, Imax, currents

double precision a, e, w, i, Om, r, v, nu, as
double precision rv(3), vv(3), Hvec(3), tvec(3), evec(3), nvec(3)
double precision norm, dot

rv=[rvx(1), rvx(2), rvx(3)]
vv=[rvx(4), rvx(5), rvx(6)]
r=norm(rv)
v=norm(vv)

a=-mu/2.d0/(v**2.d0/2.d0-mu/r)

call cross(rv, vv, Hvec)
call cross(vv, Hvec, tvec)
evec=(tvec/mu-rv/r)
e=norm(evec)
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i=dacos(Hvec(3)/norm(Hvec))
if (dabs(i)>1.d-13) then

nvec=[-Hvec(2), Hvec(1), 0.d0]/norm([-Hvec(2), Hvec(1), 0.d0])
end if
if (dabs(e)<1.d-13 .AND. (dabs(i)<1.d-13)) then

w=0.d0
Om=0.d0
nu=datan2(rv(2),rv(1))

else if (dabs(e)<1.d-13) then
Om=datan2(nvec(2),nvec(1))
w=0.d0
nu=dacos(dot(nvec,rv)/r)
if (rv(3)<0.d0) nu=-nu

else if (dabs(i)<1.d-13) then
Om=0.d0
w=datan2(evec(2),evec(1))
nu=real(dacos(dot(evec,rv)/e/r))
if (dot(rv,vv)<0.d0) nu=-nu

else
Om=datan2(nvec(2),nvec(1))
w=dacos(dot(nvec,evec)/e)
if (evec(3)<0.d0) w=-w
as=dot(evec,rv)
as=as/e/r
if (as>1.d0) then

as=1.d0
end if
nu=dacos(as)
if (dot(rv,vv)<0) nu=-nu

end if
rv=[x(1), x(2), x(3)] ! Position Vector
vv=[x(4), x(5), x(6)] ! Velocity Vector
r=norm(rv)
v=norm(vv)

a=-mu/2.d0/(v**2.d0/2.d0-mu/r) ! Semi-major Axis

call cross(rv, vv, Hvec)
call cross(vv, Hvec, tvec)

evec=(tvec/mu-rv/r) ! Eccentricity Vector

e=norm(evec) ! Eccentircity

i=dacos(Hvec(3)/norm(Hvec)) ! Inclination

C If Inclined Orbit, Calculate Line of Nodes
if (dabs(i)>1.d-13) then

nvec=[-Hvec(2), Hvec(1), 0.d0]/norm([-Hvec(2), Hvec(1), 0.d0])
end if

C No Eccentricity and Inclination Case
if (dabs(e)<1.d-13 .AND. (dabs(i)<1.d-13)) then

w=0.d0 ! Argument of Perigee
Om=0.d0 ! Argument of Line of Nodes
nu=datan2(rv(2),rv(1)) ! True Anomaly

C No Eccentricity Case
else if (dabs(e)<1.d-13) then

Om=datan2(nvec(2),nvec(1))
w=0.d0
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nu=dacos(dot(nvec,rv)/r)
if (rv(3)<0.d0) nu=-nu ! Quadrant Check

C No Inclination Case
else if (dabs(i)<1.d-13) then

Om=0.d0
w=datan2(evec(2),evec(1))
nu=real(dacos(dot(evec,rv)/e/r))
if (dot(rv,vv)<0.d0) nu=-nu

C Inclination and Eccentricity NON-Zero
else

Om=datan2(nvec(2),nvec(1))
w=dacos(dot(nvec,evec)/e)
if (evec(3)<0.d0) w=-w
as=dot(evec,rv)
as=as/e/r

! The 'as' value must be smaller than zero (Fortran Error)
if (as>1.d0) then

as=1.d0
end if

nu=dacos(as)
if (dot(rv,vv)<0) nu=-nu

end if

coes(1) = a
coes(2) = e
coes(3) = i
coes(4) = w
coes(5) = Om

C Avoid Negative Angles
do i=3,5

if (coes(i)<0) then
coes(i)=2*pi+coes(i)

end if
end do

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Cross Product
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine cross(v1, v2, v3)

implicit none

double precision v1(3), v2(3), v3(3)

v3(1) = v1(2) * v2(3) - v1(3) * v2(2)
v3(2) = v1(3) * v2(1) - v1(1) * v2(3)
v3(3) = v1(1) * v2(2) - v1(2) * v2(1)
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return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Dot Product
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function dot(v1, v2)
implicit none

double precision v1(3), v2(3)

dot=v1(1)*v2(1)+v1(2)*v2(2)+v1(3)*v2(3)

return

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c Vector Magnitude
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

double precision function norm(v3)
implicit none

double precision v3(3)

norm=dsqrt(v3(1)**2.d0+v3(2)**2.d0+v3(3)**2.d0)

return

end
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